基于物理的古木结构抗震分析:断层-结构模拟

IF 2.6 2区 工程技术 Q2 ENGINEERING, CIVIL
Zhenning Ba, Jisai Fu, Fangbo Wang, Jianwen Liang, Bin Zhang, Long Zhang
{"title":"基于物理的古木结构抗震分析:断层-结构模拟","authors":"Zhenning Ba, Jisai Fu, Fangbo Wang, Jianwen Liang, Bin Zhang, Long Zhang","doi":"10.1007/s11803-024-2268-2","DOIUrl":null,"url":null,"abstract":"<p>Based on the domain reduction method, this study employs an SEM-FEM hybrid workflow which integrates the advantages of the spectral element method (SEM) for flexible and highly efficient simulation of seismic wave propagation in a three-dimensional (3D) regional-scale geophysics model and the finite element method (FEM) for fine simulation of structural response including soil-structure interaction, and performs a physics-based simulation from initial fault rupture on an ancient wood structure. After verification of the hybrid workflow, a large-scale model of an ancient wood structure in the Beijing area, The Tower of Buddhist Incense, is established and its responses under the 1665 Tongxian earthquake and the 1730 Yiheyuan earthquake are simulated. The results from the simulated ground motion and seismic response of the wood structure under the two earthquakes demonstrate that this hybrid workflow can be employed to efficiently provide insight into the relationships between geophysical parameters and the structural response, and is of great significance toward accurate input for seismic simulation of structures under specific site and fault conditions.</p>","PeriodicalId":11416,"journal":{"name":"Earthquake Engineering and Engineering Vibration","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Physics-based seismic analysis of ancient wood structure: fault-to-structure simulation\",\"authors\":\"Zhenning Ba, Jisai Fu, Fangbo Wang, Jianwen Liang, Bin Zhang, Long Zhang\",\"doi\":\"10.1007/s11803-024-2268-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Based on the domain reduction method, this study employs an SEM-FEM hybrid workflow which integrates the advantages of the spectral element method (SEM) for flexible and highly efficient simulation of seismic wave propagation in a three-dimensional (3D) regional-scale geophysics model and the finite element method (FEM) for fine simulation of structural response including soil-structure interaction, and performs a physics-based simulation from initial fault rupture on an ancient wood structure. After verification of the hybrid workflow, a large-scale model of an ancient wood structure in the Beijing area, The Tower of Buddhist Incense, is established and its responses under the 1665 Tongxian earthquake and the 1730 Yiheyuan earthquake are simulated. The results from the simulated ground motion and seismic response of the wood structure under the two earthquakes demonstrate that this hybrid workflow can be employed to efficiently provide insight into the relationships between geophysical parameters and the structural response, and is of great significance toward accurate input for seismic simulation of structures under specific site and fault conditions.</p>\",\"PeriodicalId\":11416,\"journal\":{\"name\":\"Earthquake Engineering and Engineering Vibration\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earthquake Engineering and Engineering Vibration\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11803-024-2268-2\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthquake Engineering and Engineering Vibration","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11803-024-2268-2","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要

本研究在域缩减法的基础上,采用频谱元法(SEM)和有限元法(FEM)混合工作流程,综合了频谱元法(SEM)在三维区域尺度地球物理模型中灵活、高效地模拟地震波传播的优势和有限元法(FEM)精细模拟包括土-结构相互作用在内的结构响应的优势,对古建筑木结构进行了从初始断层破裂开始的物理模拟。在对混合工作流程进行验证后,建立了北京地区古代木结构建筑--沉香塔的大型模型,并模拟了其在 1665 年通县地震和 1730 年颐和园地震中的响应。木结构在两次地震中的地面运动和地震响应模拟结果表明,该混合工作流可以有效地揭示地球物理参数与结构响应之间的关系,对特定场地和断层条件下结构地震模拟的精确输入具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Physics-based seismic analysis of ancient wood structure: fault-to-structure simulation

Based on the domain reduction method, this study employs an SEM-FEM hybrid workflow which integrates the advantages of the spectral element method (SEM) for flexible and highly efficient simulation of seismic wave propagation in a three-dimensional (3D) regional-scale geophysics model and the finite element method (FEM) for fine simulation of structural response including soil-structure interaction, and performs a physics-based simulation from initial fault rupture on an ancient wood structure. After verification of the hybrid workflow, a large-scale model of an ancient wood structure in the Beijing area, The Tower of Buddhist Incense, is established and its responses under the 1665 Tongxian earthquake and the 1730 Yiheyuan earthquake are simulated. The results from the simulated ground motion and seismic response of the wood structure under the two earthquakes demonstrate that this hybrid workflow can be employed to efficiently provide insight into the relationships between geophysical parameters and the structural response, and is of great significance toward accurate input for seismic simulation of structures under specific site and fault conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.70
自引率
21.40%
发文量
1057
审稿时长
9 months
期刊介绍: Earthquake Engineering and Engineering Vibration is an international journal sponsored by the Institute of Engineering Mechanics (IEM), China Earthquake Administration in cooperation with the Multidisciplinary Center for Earthquake Engineering Research (MCEER), and State University of New York at Buffalo. It promotes scientific exchange between Chinese and foreign scientists and engineers, to improve the theory and practice of earthquake hazards mitigation, preparedness, and recovery. The journal focuses on earthquake engineering in all aspects, including seismology, tsunamis, ground motion characteristics, soil and foundation dynamics, wave propagation, probabilistic and deterministic methods of dynamic analysis, behavior of structures, and methods for earthquake resistant design and retrofit of structures that are germane to practicing engineers. It includes seismic code requirements, as well as supplemental energy dissipation, base isolation, and structural control.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信