MedPodGPT:用于医学研究和教育的多语种音频增强大语言模型

Shuyue Jia, Subhrangshu Bit, Edward Searls, Lindsey Claus, Pengrui Fan, Varuna H. Jasodanand, Meagan V. Lauber, Divya Veerapaneni, William M. Wang, Rhoda Au, Vijaya B Kolachalama
{"title":"MedPodGPT:用于医学研究和教育的多语种音频增强大语言模型","authors":"Shuyue Jia, Subhrangshu Bit, Edward Searls, Lindsey Claus, Pengrui Fan, Varuna H. Jasodanand, Meagan V. Lauber, Divya Veerapaneni, William M. Wang, Rhoda Au, Vijaya B Kolachalama","doi":"10.1101/2024.07.11.24310304","DOIUrl":null,"url":null,"abstract":"The proliferation of medical podcasts has generated an extensive repository of audio content, rich in specialized terminology, diverse medical topics, and expert dialogues. Here we introduce a computational framework designed to enhance large language models (LLMs) by leveraging the informational content of publicly accessible medical podcast data. This dataset, comprising over 4,300 hours of audio content, was transcribed to generate over 39 million text tokens. Our model, MedPodGPT, integrates the varied dialogue found in medical podcasts to improve understanding of natural language nuances, cultural contexts, and medical knowledge. Evaluated across multiple benchmarks, MedPodGPT demonstrated an average improvement of 2.31% over standard open-source benchmarks and showcased an improvement of 2.58% in its zero-shot multilingual transfer ability, effectively generalizing to different linguistic contexts. By harnessing the untapped potential of podcast content, MedPodGPT advances natural language processing, offering enhanced capabilities for various applications in medical research and education.","PeriodicalId":501454,"journal":{"name":"medRxiv - Health Informatics","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MedPodGPT: A multilingual audio-augmented large language model for medical research and education\",\"authors\":\"Shuyue Jia, Subhrangshu Bit, Edward Searls, Lindsey Claus, Pengrui Fan, Varuna H. Jasodanand, Meagan V. Lauber, Divya Veerapaneni, William M. Wang, Rhoda Au, Vijaya B Kolachalama\",\"doi\":\"10.1101/2024.07.11.24310304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of medical podcasts has generated an extensive repository of audio content, rich in specialized terminology, diverse medical topics, and expert dialogues. Here we introduce a computational framework designed to enhance large language models (LLMs) by leveraging the informational content of publicly accessible medical podcast data. This dataset, comprising over 4,300 hours of audio content, was transcribed to generate over 39 million text tokens. Our model, MedPodGPT, integrates the varied dialogue found in medical podcasts to improve understanding of natural language nuances, cultural contexts, and medical knowledge. Evaluated across multiple benchmarks, MedPodGPT demonstrated an average improvement of 2.31% over standard open-source benchmarks and showcased an improvement of 2.58% in its zero-shot multilingual transfer ability, effectively generalizing to different linguistic contexts. By harnessing the untapped potential of podcast content, MedPodGPT advances natural language processing, offering enhanced capabilities for various applications in medical research and education.\",\"PeriodicalId\":501454,\"journal\":{\"name\":\"medRxiv - Health Informatics\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Health Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.11.24310304\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.11.24310304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

医疗播客的激增产生了大量的音频内容,其中包含丰富的专业术语、不同的医疗主题和专家对话。在此,我们介绍一种计算框架,旨在利用可公开访问的医疗播客数据的信息内容来增强大型语言模型(LLM)。该数据集包含 4,300 多个小时的音频内容,经过转录后生成了 3,900 多万个文本标记。我们的模型 MedPodGPT 整合了医疗播客中的各种对话,以提高对自然语言细微差别、文化背景和医学知识的理解。通过多个基准评估,MedPodGPT 与标准开源基准相比平均提高了 2.31%,其零点多语言传输能力提高了 2.58%,可有效适用于不同的语言环境。通过利用播客内容尚未开发的潜力,MedPodGPT 推进了自然语言处理,为医学研究和教育领域的各种应用提供了更强大的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MedPodGPT: A multilingual audio-augmented large language model for medical research and education
The proliferation of medical podcasts has generated an extensive repository of audio content, rich in specialized terminology, diverse medical topics, and expert dialogues. Here we introduce a computational framework designed to enhance large language models (LLMs) by leveraging the informational content of publicly accessible medical podcast data. This dataset, comprising over 4,300 hours of audio content, was transcribed to generate over 39 million text tokens. Our model, MedPodGPT, integrates the varied dialogue found in medical podcasts to improve understanding of natural language nuances, cultural contexts, and medical knowledge. Evaluated across multiple benchmarks, MedPodGPT demonstrated an average improvement of 2.31% over standard open-source benchmarks and showcased an improvement of 2.58% in its zero-shot multilingual transfer ability, effectively generalizing to different linguistic contexts. By harnessing the untapped potential of podcast content, MedPodGPT advances natural language processing, offering enhanced capabilities for various applications in medical research and education.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信