{"title":"利用差分吸收激光雷达成像大气弥散过程","authors":"Robert Lung, Nick Polydorides","doi":"10.1137/23m1598404","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1467-1510, September 2024. <br/> Abstract.We consider the inverse problem of fitting atmospheric dispersion parameters based on time-resolved back-scattered differential absorption Lidar (DIAL) measurements. The obvious advantage of light-based remote sensing modalities is their extended spatial range which makes them less sensitive to strictly local perturbations/modelling errors or the distance to the plume source. In contrast to other state-of-the-art DIAL methods, we do not make a single scattering assumption but rather propose a new type modality which includes the collection of multiply scattered photons from wider/multiple fields-of-view and argue that this data, paired with a time dependent radiative transfer model, is beneficial for the reconstruction of certain image features. The resulting inverse problem is solved by means of a semiparametric approach in which the image is reduced to a small number of dispersion related parameters and high-dimensional but computationally convenient nuisance component. This not only allows us to effectively avoid a high-dimensional inverse problem but simultaneously provides a natural regularization mechanism along with parameters which are directly related to the dispersion model. These can be associated with meaningful physical units while spatial concentration profiles can be obtained by means of forward evaluation of the dispersion process.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Imaging of Atmospheric Dispersion Processes with Differential Absorption Lidar\",\"authors\":\"Robert Lung, Nick Polydorides\",\"doi\":\"10.1137/23m1598404\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1467-1510, September 2024. <br/> Abstract.We consider the inverse problem of fitting atmospheric dispersion parameters based on time-resolved back-scattered differential absorption Lidar (DIAL) measurements. The obvious advantage of light-based remote sensing modalities is their extended spatial range which makes them less sensitive to strictly local perturbations/modelling errors or the distance to the plume source. In contrast to other state-of-the-art DIAL methods, we do not make a single scattering assumption but rather propose a new type modality which includes the collection of multiply scattered photons from wider/multiple fields-of-view and argue that this data, paired with a time dependent radiative transfer model, is beneficial for the reconstruction of certain image features. The resulting inverse problem is solved by means of a semiparametric approach in which the image is reduced to a small number of dispersion related parameters and high-dimensional but computationally convenient nuisance component. This not only allows us to effectively avoid a high-dimensional inverse problem but simultaneously provides a natural regularization mechanism along with parameters which are directly related to the dispersion model. These can be associated with meaningful physical units while spatial concentration profiles can be obtained by means of forward evaluation of the dispersion process.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1598404\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1598404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Imaging of Atmospheric Dispersion Processes with Differential Absorption Lidar
SIAM Journal on Imaging Sciences, Volume 17, Issue 3, Page 1467-1510, September 2024. Abstract.We consider the inverse problem of fitting atmospheric dispersion parameters based on time-resolved back-scattered differential absorption Lidar (DIAL) measurements. The obvious advantage of light-based remote sensing modalities is their extended spatial range which makes them less sensitive to strictly local perturbations/modelling errors or the distance to the plume source. In contrast to other state-of-the-art DIAL methods, we do not make a single scattering assumption but rather propose a new type modality which includes the collection of multiply scattered photons from wider/multiple fields-of-view and argue that this data, paired with a time dependent radiative transfer model, is beneficial for the reconstruction of certain image features. The resulting inverse problem is solved by means of a semiparametric approach in which the image is reduced to a small number of dispersion related parameters and high-dimensional but computationally convenient nuisance component. This not only allows us to effectively avoid a high-dimensional inverse problem but simultaneously provides a natural regularization mechanism along with parameters which are directly related to the dispersion model. These can be associated with meaningful physical units while spatial concentration profiles can be obtained by means of forward evaluation of the dispersion process.