Arnaud Bodin, Evelia Rosa García Barroso, Patrick Popescu‐Pampu, Miruna‐Ştefana Sorea
{"title":"实单变量奇异点的组合研究","authors":"Arnaud Bodin, Evelia Rosa García Barroso, Patrick Popescu‐Pampu, Miruna‐Ştefana Sorea","doi":"10.1002/mana.202300418","DOIUrl":null,"url":null,"abstract":"We study a broad class of morsifications of germs of univariate real analytic functions. We characterize the combinatorial types of the resulting Morse functions via planar contact trees constructed from Newton–Puiseux roots of the polar curves of the morsifications.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combinatorial study of morsifications of real univariate singularities\",\"authors\":\"Arnaud Bodin, Evelia Rosa García Barroso, Patrick Popescu‐Pampu, Miruna‐Ştefana Sorea\",\"doi\":\"10.1002/mana.202300418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study a broad class of morsifications of germs of univariate real analytic functions. We characterize the combinatorial types of the resulting Morse functions via planar contact trees constructed from Newton–Puiseux roots of the polar curves of the morsifications.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1002/mana.202300418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1002/mana.202300418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Combinatorial study of morsifications of real univariate singularities
We study a broad class of morsifications of germs of univariate real analytic functions. We characterize the combinatorial types of the resulting Morse functions via planar contact trees constructed from Newton–Puiseux roots of the polar curves of the morsifications.