无界域上随机非局部方程回拉吸引子的心性和 IOD 型连续性

IF 1.3 2区 数学 Q1 MATHEMATICS
Yangrong Li, Tomás Caraballo, Fengling Wang
{"title":"无界域上随机非局部方程回拉吸引子的心性和 IOD 型连续性","authors":"Yangrong Li, Tomás Caraballo, Fengling Wang","doi":"10.1007/s00208-024-02938-1","DOIUrl":null,"url":null,"abstract":"<p>We study the continuity set (the set of all continuous points) of pullback random attractors from a parametric space into the space of all compact subsets of the state space with Hausdorff metric. We find a general theorem that the continuity set is an IOD-type (a countable <i>intersection</i> of <i>open dense</i> sets) with the local similarity under appropriate conditions of random dynamical systems, and we further show that any IOD-type set in the parametric space has the continuous cardinality, which affirmatively answers the unsolved question about the cardinality of the continuity set of attractors in the literature. Applying to the random nonautonomous nonlocal parabolic equations on an unbounded domain driven by colored noise, we establish the existence and IOD-type continuity of pullback random attractors in time, sample-translation and noise-size, moreover, we prove that the continuity set of the pullback random attractor on the plane of time and sample-translation is composed of diagonal rays whose number of bars is the continuous cardinality.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"55 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cardinality and IOD-type continuity of pullback attractors for random nonlocal equations on unbounded domains\",\"authors\":\"Yangrong Li, Tomás Caraballo, Fengling Wang\",\"doi\":\"10.1007/s00208-024-02938-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the continuity set (the set of all continuous points) of pullback random attractors from a parametric space into the space of all compact subsets of the state space with Hausdorff metric. We find a general theorem that the continuity set is an IOD-type (a countable <i>intersection</i> of <i>open dense</i> sets) with the local similarity under appropriate conditions of random dynamical systems, and we further show that any IOD-type set in the parametric space has the continuous cardinality, which affirmatively answers the unsolved question about the cardinality of the continuity set of attractors in the literature. Applying to the random nonautonomous nonlocal parabolic equations on an unbounded domain driven by colored noise, we establish the existence and IOD-type continuity of pullback random attractors in time, sample-translation and noise-size, moreover, we prove that the continuity set of the pullback random attractor on the plane of time and sample-translation is composed of diagonal rays whose number of bars is the continuous cardinality.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02938-1\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02938-1","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了从参数空间到具有 Hausdorff 度量的状态空间的所有紧凑子集空间的回拉随机吸引子的连续集(所有连续点的集合)。我们发现了在随机动力系统的适当条件下,连续集是具有局部相似性的 IOD 型(开放稠密集的可数交集)的一般定理,并进一步证明了参数空间中的任何 IOD 型集都具有连续的万有性,这肯定地回答了文献中关于吸引子连续集万有性的未决问题。应用于有色噪声驱动的无界域上的随机非自治非局部抛物方程,我们建立了时间、采样变换和噪声大小上的回拉随机吸引子的存在性和IOD型连续性,而且证明了回拉随机吸引子在时间和采样变换平面上的连续集是由对角线组成的,其条数是连续的万有性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cardinality and IOD-type continuity of pullback attractors for random nonlocal equations on unbounded domains

We study the continuity set (the set of all continuous points) of pullback random attractors from a parametric space into the space of all compact subsets of the state space with Hausdorff metric. We find a general theorem that the continuity set is an IOD-type (a countable intersection of open dense sets) with the local similarity under appropriate conditions of random dynamical systems, and we further show that any IOD-type set in the parametric space has the continuous cardinality, which affirmatively answers the unsolved question about the cardinality of the continuity set of attractors in the literature. Applying to the random nonautonomous nonlocal parabolic equations on an unbounded domain driven by colored noise, we establish the existence and IOD-type continuity of pullback random attractors in time, sample-translation and noise-size, moreover, we prove that the continuity set of the pullback random attractor on the plane of time and sample-translation is composed of diagonal rays whose number of bars is the continuous cardinality.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信