无模拉丝中镁锌薄金属丝的工艺窗口和机械性能

IF 2.6 3区 材料科学 Q2 ENGINEERING, MANUFACTURING
Merle Braatz, Jan Bohlen, Noomane Ben Khalifa
{"title":"无模拉丝中镁锌薄金属丝的工艺窗口和机械性能","authors":"Merle Braatz,&nbsp;Jan Bohlen,&nbsp;Noomane Ben Khalifa","doi":"10.1007/s12289-024-01848-6","DOIUrl":null,"url":null,"abstract":"<div><p>Due to their biodegradable properties, magnesium- and zinc-based alloys are in the focus of interest for numerous medical applications, e.g. in the form of thin wires. To achieve improved processability by using hot forming and to obtain higher diameter reductions per pass, the dieless wire drawing process is presented in this paper. In order to investigate the processability and the resulting mechanical properties, a selection of magnesium- and zinc-alloys as well as process parameters are chosen, and wire manufacturing is carried out using the dieless drawing process. The resulting process windows and mechanical properties for the selected materials are discussed. It is found that the length of the forming zone is an important indicator for the process window and the cross-sectional area reduction accuracy in the dieless wire drawing process. Furthermore, process parameter variations result in a distinct variation of the mechanical properties of the wires, whereas process temperatures close to the wire extrusion temperature result in mechanical properties similar to the as-extruded wires. Good localization of the deformation is found for forming zones of 25–75 mm length at elevated temperatures and cross-sectional area reductions of up to 30% are possible for Z1 and ZX10 in one drawing step.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":591,"journal":{"name":"International Journal of Material Forming","volume":"17 5","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s12289-024-01848-6.pdf","citationCount":"0","resultStr":"{\"title\":\"Process window and mechanical properties for thin magnesium- and zinc-wires in dieless wire drawing\",\"authors\":\"Merle Braatz,&nbsp;Jan Bohlen,&nbsp;Noomane Ben Khalifa\",\"doi\":\"10.1007/s12289-024-01848-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to their biodegradable properties, magnesium- and zinc-based alloys are in the focus of interest for numerous medical applications, e.g. in the form of thin wires. To achieve improved processability by using hot forming and to obtain higher diameter reductions per pass, the dieless wire drawing process is presented in this paper. In order to investigate the processability and the resulting mechanical properties, a selection of magnesium- and zinc-alloys as well as process parameters are chosen, and wire manufacturing is carried out using the dieless drawing process. The resulting process windows and mechanical properties for the selected materials are discussed. It is found that the length of the forming zone is an important indicator for the process window and the cross-sectional area reduction accuracy in the dieless wire drawing process. Furthermore, process parameter variations result in a distinct variation of the mechanical properties of the wires, whereas process temperatures close to the wire extrusion temperature result in mechanical properties similar to the as-extruded wires. Good localization of the deformation is found for forming zones of 25–75 mm length at elevated temperatures and cross-sectional area reductions of up to 30% are possible for Z1 and ZX10 in one drawing step.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":591,\"journal\":{\"name\":\"International Journal of Material Forming\",\"volume\":\"17 5\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s12289-024-01848-6.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Material Forming\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12289-024-01848-6\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Material Forming","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12289-024-01848-6","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0

摘要

由于镁基合金和锌基合金具有可生物降解的特性,因此在许多医疗应用领域,例如以细丝的形式出现,成为人们关注的焦点。为了通过热成型提高加工性能,并获得更高的单次直径缩减率,本文介绍了无模拉丝工艺。为了研究加工性能和由此产生的机械性能,本文选择了镁合金和锌合金以及工艺参数,并使用无模拉丝工艺进行线材制造。对所选材料的工艺窗口和机械性能进行了讨论。研究发现,成型区的长度是无模拉丝工艺中工艺窗口和截面积缩小精度的重要指标。此外,工艺参数的变化会导致线材机械性能的明显变化,而工艺温度接近线材挤压温度则会导致线材的机械性能与挤压后的线材相似。在温度升高的情况下,长度为 25-75 毫米的成形区的变形局部性良好,Z1 和 ZX10 的横截面积可在一个拉丝步骤中减少 30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Process window and mechanical properties for thin magnesium- and zinc-wires in dieless wire drawing

Process window and mechanical properties for thin magnesium- and zinc-wires in dieless wire drawing

Due to their biodegradable properties, magnesium- and zinc-based alloys are in the focus of interest for numerous medical applications, e.g. in the form of thin wires. To achieve improved processability by using hot forming and to obtain higher diameter reductions per pass, the dieless wire drawing process is presented in this paper. In order to investigate the processability and the resulting mechanical properties, a selection of magnesium- and zinc-alloys as well as process parameters are chosen, and wire manufacturing is carried out using the dieless drawing process. The resulting process windows and mechanical properties for the selected materials are discussed. It is found that the length of the forming zone is an important indicator for the process window and the cross-sectional area reduction accuracy in the dieless wire drawing process. Furthermore, process parameter variations result in a distinct variation of the mechanical properties of the wires, whereas process temperatures close to the wire extrusion temperature result in mechanical properties similar to the as-extruded wires. Good localization of the deformation is found for forming zones of 25–75 mm length at elevated temperatures and cross-sectional area reductions of up to 30% are possible for Z1 and ZX10 in one drawing step.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Material Forming
International Journal of Material Forming ENGINEERING, MANUFACTURING-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
5.10
自引率
4.20%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Journal publishes and disseminates original research in the field of material forming. The research should constitute major achievements in the understanding, modeling or simulation of material forming processes. In this respect ‘forming’ implies a deliberate deformation of material. The journal establishes a platform of communication between engineers and scientists, covering all forming processes, including sheet forming, bulk forming, powder forming, forming in near-melt conditions (injection moulding, thixoforming, film blowing etc.), micro-forming, hydro-forming, thermo-forming, incremental forming etc. Other manufacturing technologies like machining and cutting can be included if the focus of the work is on plastic deformations. All materials (metals, ceramics, polymers, composites, glass, wood, fibre reinforced materials, materials in food processing, biomaterials, nano-materials, shape memory alloys etc.) and approaches (micro-macro modelling, thermo-mechanical modelling, numerical simulation including new and advanced numerical strategies, experimental analysis, inverse analysis, model identification, optimization, design and control of forming tools and machines, wear and friction, mechanical behavior and formability of materials etc.) are concerned.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信