通过购买配额优化碳排放控制

Xinfu Chen, Yuchao Dong, Wenlin Huang, Jin Liang
{"title":"通过购买配额优化碳排放控制","authors":"Xinfu Chen, Yuchao Dong, Wenlin Huang, Jin Liang","doi":"arxiv-2407.08477","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a company can simultaneously reduce its emissions\nand buy carbon allowances at any time. We establish an optimal control model\ninvolving two stochastic processes with two control variables, which is a\nsingular control problem. This model can then be converted into a\nHamilton-Jacobi-Bellman (HJB) equation, which is a two-dimensional variational\nequality with gradient barrier, so that the free boundary is a surface. We\nprove the existence and uniqueness of the solution. Finally, some numerical\nresults are shown.","PeriodicalId":501084,"journal":{"name":"arXiv - QuantFin - Mathematical Finance","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Carbon Emission Control With Allowances Purchasing\",\"authors\":\"Xinfu Chen, Yuchao Dong, Wenlin Huang, Jin Liang\",\"doi\":\"arxiv-2407.08477\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a company can simultaneously reduce its emissions\\nand buy carbon allowances at any time. We establish an optimal control model\\ninvolving two stochastic processes with two control variables, which is a\\nsingular control problem. This model can then be converted into a\\nHamilton-Jacobi-Bellman (HJB) equation, which is a two-dimensional variational\\nequality with gradient barrier, so that the free boundary is a surface. We\\nprove the existence and uniqueness of the solution. Finally, some numerical\\nresults are shown.\",\"PeriodicalId\":501084,\"journal\":{\"name\":\"arXiv - QuantFin - Mathematical Finance\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Mathematical Finance\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.08477\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.08477","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑到一家公司可以在任何时候同时减少排放和购买碳配额。我们建立了一个最优控制模型,其中涉及两个随机过程和两个控制变量,这是一个奇数控制问题。这个模型可以转化为哈密尔顿-雅各比-贝尔曼(HJB)方程,后者是一个带有梯度障碍的二维变分方程,因此自由边界是一个曲面。我们证明了解的存在性和唯一性。最后,展示了一些数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal Carbon Emission Control With Allowances Purchasing
In this paper, we consider a company can simultaneously reduce its emissions and buy carbon allowances at any time. We establish an optimal control model involving two stochastic processes with two control variables, which is a singular control problem. This model can then be converted into a Hamilton-Jacobi-Bellman (HJB) equation, which is a two-dimensional variational equality with gradient barrier, so that the free boundary is a surface. We prove the existence and uniqueness of the solution. Finally, some numerical results are shown.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信