状态受限于黎曼曼曲面的最优控制问题的最优对的存在性

IF 2.2 2区 数学 Q2 AUTOMATION & CONTROL SYSTEMS
Li Deng, Xu Zhang
{"title":"状态受限于黎曼曼曲面的最优控制问题的最优对的存在性","authors":"Li Deng, Xu Zhang","doi":"10.1137/23m1584095","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Control and Optimization, Volume 62, Issue 4, Page 2098-2114, August 2024. <br/> Abstract. In this paper, we investigate the existence of optimal pairs for optimal control problems with their states constrained pointwise to Riemannian manifolds. For this purpose, by means of the Riemannian geometric tool, we introduce a crucial Cesari-type property, which is an extension of the classical Cesari property (see Definition 3.3, p. 51 in [L. D. Berkovitz, Optimal Control Theory, Appl. Math. Sci. 12, Springer-Verlag, New York, Heidelberg, 1974]) from the setting of Euclidean spaces to that of Riemannian manifolds. Moreover, we show the efficiency of our result by a concrete example.","PeriodicalId":49531,"journal":{"name":"SIAM Journal on Control and Optimization","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of Optimal Pairs for Optimal Control Problems with States Constrained to Riemannian Manifolds\",\"authors\":\"Li Deng, Xu Zhang\",\"doi\":\"10.1137/23m1584095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Control and Optimization, Volume 62, Issue 4, Page 2098-2114, August 2024. <br/> Abstract. In this paper, we investigate the existence of optimal pairs for optimal control problems with their states constrained pointwise to Riemannian manifolds. For this purpose, by means of the Riemannian geometric tool, we introduce a crucial Cesari-type property, which is an extension of the classical Cesari property (see Definition 3.3, p. 51 in [L. D. Berkovitz, Optimal Control Theory, Appl. Math. Sci. 12, Springer-Verlag, New York, Heidelberg, 1974]) from the setting of Euclidean spaces to that of Riemannian manifolds. Moreover, we show the efficiency of our result by a concrete example.\",\"PeriodicalId\":49531,\"journal\":{\"name\":\"SIAM Journal on Control and Optimization\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Control and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1584095\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Control and Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1584095","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 控制与优化期刊》,第 62 卷第 4 期,第 2098-2114 页,2024 年 8 月。 摘要在本文中,我们研究了最优控制问题的最优对的存在性,这些问题的状态点约束于黎曼流形。为此,我们借助黎曼几何工具,引入了一个关键的 Cesari 型属性,它是经典 Cesari 属性的扩展(见 [L. D. Berkovitz, Optimal Control Problems, Riemannian Manifolds] 中的定义 3.3, 第 51 页)。D. Berkovitz, Optimal Control Theory, Appl.Sci. 12, Springer-Verlag, New York, Heidelberg, 1974])中的定义 3.3)。此外,我们还通过一个具体的例子来说明我们的结果的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of Optimal Pairs for Optimal Control Problems with States Constrained to Riemannian Manifolds
SIAM Journal on Control and Optimization, Volume 62, Issue 4, Page 2098-2114, August 2024.
Abstract. In this paper, we investigate the existence of optimal pairs for optimal control problems with their states constrained pointwise to Riemannian manifolds. For this purpose, by means of the Riemannian geometric tool, we introduce a crucial Cesari-type property, which is an extension of the classical Cesari property (see Definition 3.3, p. 51 in [L. D. Berkovitz, Optimal Control Theory, Appl. Math. Sci. 12, Springer-Verlag, New York, Heidelberg, 1974]) from the setting of Euclidean spaces to that of Riemannian manifolds. Moreover, we show the efficiency of our result by a concrete example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
4.50%
发文量
143
审稿时长
12 months
期刊介绍: SIAM Journal on Control and Optimization (SICON) publishes original research articles on the mathematics and applications of control theory and certain parts of optimization theory. Papers considered for publication must be significant at both the mathematical level and the level of applications or potential applications. Papers containing mostly routine mathematics or those with no discernible connection to control and systems theory or optimization will not be considered for publication. From time to time, the journal will also publish authoritative surveys of important subject areas in control theory and optimization whose level of maturity permits a clear and unified exposition. The broad areas mentioned above are intended to encompass a wide range of mathematical techniques and scientific, engineering, economic, and industrial applications. These include stochastic and deterministic methods in control, estimation, and identification of systems; modeling and realization of complex control systems; the numerical analysis and related computational methodology of control processes and allied issues; and the development of mathematical theories and techniques that give new insights into old problems or provide the basis for further progress in control theory and optimization. Within the field of optimization, the journal focuses on the parts that are relevant to dynamic and control systems. Contributions to numerical methodology are also welcome in accordance with these aims, especially as related to large-scale problems and decomposition as well as to fundamental questions of convergence and approximation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信