用于大规模制备水凝胶纤维的涡动牵伸纺丝平台

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jinhua Dong, Lei Wang, Yi Chen, Boyu Xu, Hai Tang, Ziqiang Zhao, Weikang Lin, Huijing Hu, Peihang Li, Runfeng Cao, Long Wang, Lei Zhang, Yunlang She, Bingyao Deng, Weiyan Sun, Chang Chen, Dawei Li
{"title":"用于大规模制备水凝胶纤维的涡动牵伸纺丝平台","authors":"Jinhua Dong, Lei Wang, Yi Chen, Boyu Xu, Hai Tang, Ziqiang Zhao, Weikang Lin, Huijing Hu, Peihang Li, Runfeng Cao, Long Wang, Lei Zhang, Yunlang She, Bingyao Deng, Weiyan Sun, Chang Chen, Dawei Li","doi":"10.1007/s42765-024-00466-w","DOIUrl":null,"url":null,"abstract":"<p>Hydrogel fibers have gained considerable attention, but their large-scale production and industrial application are currently constrained. The key lies in precise diameter control and industrial manufacturing with a straightforward, energy-saving, and efficient strategy. Herein, we introduce a hydrodynamic drafting spinning platform inspired by water vortices. It employs the rotation of a nonsolvent to generate vortices and further facilitate the efficient drafting of hydrogel fibers. Through supporting equipment, we have achieved impressive results, including scalable production capabilities (1 h, single channel output of 2 × 10<sup>3</sup> m of fibers) and extensive adaptability. Subsequently, by simply regulating the velocity difference between fiber extrusion and fluid vortex, hydrogel fibers can be drafted to any diameter from about 1 mm to 5 × 10<sup>–2</sup> mm (for chitosan system). Notably, this platform endows hydrogel fibers to carry functional hydrophilic or hydrophobic drugs. Equally significant, these delicate hydrogel fibers seamlessly integrate with subsequent manufacturing technologies. This allows the production of various end products, such as fiber bundles, yarns, fabrics, and nonwovens. Furthermore, the immense potential in biomedical applications has been demonstrated after obtaining hydrogel fiber-based nonwoven as wound dressings. In summary, the hydrodynamic drafting spinning platform offers an effective solution for the large-scale production of diameter-controllable, multifunctional hydrogel fibers.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"38 1","pages":""},"PeriodicalIF":17.2000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vortex-Inspired Hydrodynamic Drafting Spinning Platform for Large-Scale Preparation of Hydrogel Fibers\",\"authors\":\"Jinhua Dong, Lei Wang, Yi Chen, Boyu Xu, Hai Tang, Ziqiang Zhao, Weikang Lin, Huijing Hu, Peihang Li, Runfeng Cao, Long Wang, Lei Zhang, Yunlang She, Bingyao Deng, Weiyan Sun, Chang Chen, Dawei Li\",\"doi\":\"10.1007/s42765-024-00466-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrogel fibers have gained considerable attention, but their large-scale production and industrial application are currently constrained. The key lies in precise diameter control and industrial manufacturing with a straightforward, energy-saving, and efficient strategy. Herein, we introduce a hydrodynamic drafting spinning platform inspired by water vortices. It employs the rotation of a nonsolvent to generate vortices and further facilitate the efficient drafting of hydrogel fibers. Through supporting equipment, we have achieved impressive results, including scalable production capabilities (1 h, single channel output of 2 × 10<sup>3</sup> m of fibers) and extensive adaptability. Subsequently, by simply regulating the velocity difference between fiber extrusion and fluid vortex, hydrogel fibers can be drafted to any diameter from about 1 mm to 5 × 10<sup>–2</sup> mm (for chitosan system). Notably, this platform endows hydrogel fibers to carry functional hydrophilic or hydrophobic drugs. Equally significant, these delicate hydrogel fibers seamlessly integrate with subsequent manufacturing technologies. This allows the production of various end products, such as fiber bundles, yarns, fabrics, and nonwovens. Furthermore, the immense potential in biomedical applications has been demonstrated after obtaining hydrogel fiber-based nonwoven as wound dressings. In summary, the hydrodynamic drafting spinning platform offers an effective solution for the large-scale production of diameter-controllable, multifunctional hydrogel fibers.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\\n\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s42765-024-00466-w\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s42765-024-00466-w","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水凝胶纤维备受关注,但其大规模生产和工业应用目前还受到限制。关键在于精确控制直径,并采用简单、节能、高效的策略进行工业化生产。在此,我们介绍一种受水漩涡启发的水动力牵伸纺丝平台。它利用非溶剂的旋转产生涡流,进一步促进水凝胶纤维的高效牵伸。通过配套设备,我们取得了令人印象深刻的成果,包括可扩展的生产能力(1 小时,单通道产出 2 × 103 米纤维)和广泛的适应性。随后,只需调节纤维挤出和流体涡流之间的速度差,就能将水凝胶纤维拉伸到从约 1 毫米到 5 × 10-2 毫米(壳聚糖系统)的任何直径。值得注意的是,这一平台赋予了水凝胶纤维携带功能性亲水或疏水药物的能力。同样重要的是,这些精致的水凝胶纤维可与后续制造技术无缝集成。这样就可以生产出各种最终产品,如纤维束、纱线、织物和无纺布。此外,以水凝胶纤维为基础的无纺布作为伤口敷料后,在生物医学应用方面的巨大潜力也得到了证实。总之,水动力牵伸纺丝平台为大规模生产直径可控的多功能水凝胶纤维提供了有效的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vortex-Inspired Hydrodynamic Drafting Spinning Platform for Large-Scale Preparation of Hydrogel Fibers

Vortex-Inspired Hydrodynamic Drafting Spinning Platform for Large-Scale Preparation of Hydrogel Fibers

Hydrogel fibers have gained considerable attention, but their large-scale production and industrial application are currently constrained. The key lies in precise diameter control and industrial manufacturing with a straightforward, energy-saving, and efficient strategy. Herein, we introduce a hydrodynamic drafting spinning platform inspired by water vortices. It employs the rotation of a nonsolvent to generate vortices and further facilitate the efficient drafting of hydrogel fibers. Through supporting equipment, we have achieved impressive results, including scalable production capabilities (1 h, single channel output of 2 × 103 m of fibers) and extensive adaptability. Subsequently, by simply regulating the velocity difference between fiber extrusion and fluid vortex, hydrogel fibers can be drafted to any diameter from about 1 mm to 5 × 10–2 mm (for chitosan system). Notably, this platform endows hydrogel fibers to carry functional hydrophilic or hydrophobic drugs. Equally significant, these delicate hydrogel fibers seamlessly integrate with subsequent manufacturing technologies. This allows the production of various end products, such as fiber bundles, yarns, fabrics, and nonwovens. Furthermore, the immense potential in biomedical applications has been demonstrated after obtaining hydrogel fiber-based nonwoven as wound dressings. In summary, the hydrodynamic drafting spinning platform offers an effective solution for the large-scale production of diameter-controllable, multifunctional hydrogel fibers.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信