带约束条件的形状和拓扑优化问题 赫尔姆霍兹方程和频谱问题

IF 1.4 Q2 MATHEMATICS, APPLIED
Mame Gor Ngom , Ibrahima Faye , Diaraf Seck
{"title":"带约束条件的形状和拓扑优化问题 赫尔姆霍兹方程和频谱问题","authors":"Mame Gor Ngom ,&nbsp;Ibrahima Faye ,&nbsp;Diaraf Seck","doi":"10.1016/j.rinam.2024.100474","DOIUrl":null,"url":null,"abstract":"<div><p>Coastal erosion describes the displacement of sand caused by the movement induced by tides, waves or currents. Some of its wave phenomena are modelled by Helmholtz-type equations. Our purposes, in this paper are, first, to study optimal shapes obstacles to mitigate sand transport under the constraint of the Helmholtz equation. And the second side of this work is related to Dirichlet and Neumann spectral problems. We show the existence of optimal shapes in a general admissible set of quasi open sets. And necessary optimality conditions of first order are given in a regular framework using both shape and topological optimization. Some numerical simulations are given to represent optimal domains.</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100474"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259003742400044X/pdfft?md5=1bac6e4d175ca7207d9cd34940f1cd45&pid=1-s2.0-S259003742400044X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On shape and topological optimization problems with constraints Helmholtz equation and spectral problems\",\"authors\":\"Mame Gor Ngom ,&nbsp;Ibrahima Faye ,&nbsp;Diaraf Seck\",\"doi\":\"10.1016/j.rinam.2024.100474\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Coastal erosion describes the displacement of sand caused by the movement induced by tides, waves or currents. Some of its wave phenomena are modelled by Helmholtz-type equations. Our purposes, in this paper are, first, to study optimal shapes obstacles to mitigate sand transport under the constraint of the Helmholtz equation. And the second side of this work is related to Dirichlet and Neumann spectral problems. We show the existence of optimal shapes in a general admissible set of quasi open sets. And necessary optimality conditions of first order are given in a regular framework using both shape and topological optimization. Some numerical simulations are given to represent optimal domains.</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"23 \",\"pages\":\"Article 100474\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S259003742400044X/pdfft?md5=1bac6e4d175ca7207d9cd34940f1cd45&pid=1-s2.0-S259003742400044X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S259003742400044X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259003742400044X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

海岸侵蚀描述的是潮汐、海浪或水流引起的运动所造成的沙子位移。其中一些波浪现象是用亥姆霍兹方程模拟的。在本文中,我们的目的首先是研究在亥姆霍兹方程的约束下,减轻沙粒迁移的最佳障碍物形状。这项工作的第二方面与狄利克特和诺伊曼谱问题有关。我们证明了在准开放集的一般可容许集中存在最优形状。同时,我们还利用形状优化和拓扑优化,在常规框架内给出了一阶必要最优条件。我们还给出了一些数值模拟来表示最优域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On shape and topological optimization problems with constraints Helmholtz equation and spectral problems

Coastal erosion describes the displacement of sand caused by the movement induced by tides, waves or currents. Some of its wave phenomena are modelled by Helmholtz-type equations. Our purposes, in this paper are, first, to study optimal shapes obstacles to mitigate sand transport under the constraint of the Helmholtz equation. And the second side of this work is related to Dirichlet and Neumann spectral problems. We show the existence of optimal shapes in a general admissible set of quasi open sets. And necessary optimality conditions of first order are given in a regular framework using both shape and topological optimization. Some numerical simulations are given to represent optimal domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Applied Mathematics
Results in Applied Mathematics Mathematics-Applied Mathematics
CiteScore
3.20
自引率
10.00%
发文量
50
审稿时长
23 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信