{"title":"非加法概率的迭代对数一般规律","authors":"Zhaojun Zong , Miaomiao Gao , Feng Hu","doi":"10.1016/j.rinam.2024.100475","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by some interesting problems in mathematical economics, quantum mechanics and finance, non-additive probabilities have been used to describe the phenomena which are generally non-additive. In this paper, we further study the law of the iterated logarithm (LIL) for non-additive probabilities, based on existing results. Under the framework of sublinear expectation initiated by Peng, we give two convergence results of <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>≔</mo><mfrac><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><msqrt><mrow><mi>n</mi></mrow></msqrt><mi>ϕ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></mfrac></mrow></math></span> under some reasonable assumptions, where <span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> is a sequence of random variables and <span><math><mi>ϕ</mi></math></span> is a positive nondecreasing function. From these, a general LIL for non-additive probabilities is proved for negatively dependent and non-identically distributed random variables. It turns out that our result is a natural extension of the Kolmogorov LIL and the Hartman–Wintner LIL. Theorem 1 and Theorem 2 in this paper can be seen an extension of Theorem 1 in Chen and Hu (2014).</p></div>","PeriodicalId":36918,"journal":{"name":"Results in Applied Mathematics","volume":"23 ","pages":"Article 100475"},"PeriodicalIF":1.4000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590037424000451/pdfft?md5=fc6eb3a1286d72ec3562e2dc6bd8f382&pid=1-s2.0-S2590037424000451-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A general law of the iterated logarithm for non-additive probabilities\",\"authors\":\"Zhaojun Zong , Miaomiao Gao , Feng Hu\",\"doi\":\"10.1016/j.rinam.2024.100475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Motivated by some interesting problems in mathematical economics, quantum mechanics and finance, non-additive probabilities have been used to describe the phenomena which are generally non-additive. In this paper, we further study the law of the iterated logarithm (LIL) for non-additive probabilities, based on existing results. Under the framework of sublinear expectation initiated by Peng, we give two convergence results of <span><math><mrow><msub><mrow><mi>V</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>≔</mo><mfrac><mrow><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow><mrow><msqrt><mrow><mi>n</mi></mrow></msqrt><mi>ϕ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></mfrac></mrow></math></span> under some reasonable assumptions, where <span><math><msubsup><mrow><mrow><mo>{</mo><msub><mrow><mi>X</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>}</mo></mrow></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></math></span> is a sequence of random variables and <span><math><mi>ϕ</mi></math></span> is a positive nondecreasing function. From these, a general LIL for non-additive probabilities is proved for negatively dependent and non-identically distributed random variables. It turns out that our result is a natural extension of the Kolmogorov LIL and the Hartman–Wintner LIL. Theorem 1 and Theorem 2 in this paper can be seen an extension of Theorem 1 in Chen and Hu (2014).</p></div>\",\"PeriodicalId\":36918,\"journal\":{\"name\":\"Results in Applied Mathematics\",\"volume\":\"23 \",\"pages\":\"Article 100475\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000451/pdfft?md5=fc6eb3a1286d72ec3562e2dc6bd8f382&pid=1-s2.0-S2590037424000451-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590037424000451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590037424000451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
受数理经济学、量子力学和金融学中一些有趣问题的启发,非相加概率被用来描述一般非相加的现象。本文在已有成果的基础上,进一步研究了非加概率的迭代对数定律(LIL)。在彭晓峰提出的亚线性期望框架下,我们给出了 Vn≔∑i=1nXinj(n)在一些合理假设下的两个收敛结果,其中 {Xi}i=1∞ 是一个随机变量序列,j 是一个正的非递减函数。由此,对于负相关和非同分布的随机变量,证明了非相加概率的一般 LIL。事实证明,我们的结果是柯尔莫哥洛夫 LIL 和哈特曼-温特纳 LIL 的自然扩展。本文的定理 1 和定理 2 可以看作是 Chen 和 Hu(2014)中定理 1 的扩展。
A general law of the iterated logarithm for non-additive probabilities
Motivated by some interesting problems in mathematical economics, quantum mechanics and finance, non-additive probabilities have been used to describe the phenomena which are generally non-additive. In this paper, we further study the law of the iterated logarithm (LIL) for non-additive probabilities, based on existing results. Under the framework of sublinear expectation initiated by Peng, we give two convergence results of under some reasonable assumptions, where is a sequence of random variables and is a positive nondecreasing function. From these, a general LIL for non-additive probabilities is proved for negatively dependent and non-identically distributed random variables. It turns out that our result is a natural extension of the Kolmogorov LIL and the Hartman–Wintner LIL. Theorem 1 and Theorem 2 in this paper can be seen an extension of Theorem 1 in Chen and Hu (2014).