OCL-MEC:基于负载均衡框架的在线 CPU 内核预测,用于移动边缘计算环境中的卸载资源管理

Q4 Engineering
Chander Diwaker, Aarti Sharma
{"title":"OCL-MEC:基于负载均衡框架的在线 CPU 内核预测,用于移动边缘计算环境中的卸载资源管理","authors":"Chander Diwaker,&nbsp;Aarti Sharma","doi":"10.1016/j.measen.2024.101258","DOIUrl":null,"url":null,"abstract":"<div><p>Clients can increase or decrease the number of resources they use dynamically over time due to the elasticity of cloud resources. As a result, variations in resource demands and predefined VM sizes result in a lack of resource utiliation, load imbalances, and excessive power consumption. A framework of efficient resource management is proposed to address these issues, balancing the load accordingly and anticipating the resource utilization of the servers. By optimizing resource utilization and minimizing the number of active servers, this technique facilitates power savings. Under/overloaded servers reduce energy consumption, execution delay, and performance degradation through a resource prediction system that is deployed at the CPU. Moreover, OCL-MEC load-balancing and resource allocation algorithms are proposed to reduce data center network traffic and power consumption. Experiments on real-world workload datasets, namely Bitsbrain VM traces, are conducted to evaluate the proposed framework. Different performance metrics demonstrate the superiority of the proposed framework over state-of-the-art approaches. Power savings of up to 98 % can be achieved by the OCL-MEC framework using a decision tree load balancing model based on HMM prediction systems.</p></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"34 ","pages":"Article 101258"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665917424002344/pdfft?md5=5c71dc500128e6060d780cde04d6fdfd&pid=1-s2.0-S2665917424002344-main.pdf","citationCount":"0","resultStr":"{\"title\":\"OCL-MEC: An online CPU-core prediction based on load balancing framework for offloading resource management in mobile edge computing environment\",\"authors\":\"Chander Diwaker,&nbsp;Aarti Sharma\",\"doi\":\"10.1016/j.measen.2024.101258\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Clients can increase or decrease the number of resources they use dynamically over time due to the elasticity of cloud resources. As a result, variations in resource demands and predefined VM sizes result in a lack of resource utiliation, load imbalances, and excessive power consumption. A framework of efficient resource management is proposed to address these issues, balancing the load accordingly and anticipating the resource utilization of the servers. By optimizing resource utilization and minimizing the number of active servers, this technique facilitates power savings. Under/overloaded servers reduce energy consumption, execution delay, and performance degradation through a resource prediction system that is deployed at the CPU. Moreover, OCL-MEC load-balancing and resource allocation algorithms are proposed to reduce data center network traffic and power consumption. Experiments on real-world workload datasets, namely Bitsbrain VM traces, are conducted to evaluate the proposed framework. Different performance metrics demonstrate the superiority of the proposed framework over state-of-the-art approaches. Power savings of up to 98 % can be achieved by the OCL-MEC framework using a decision tree load balancing model based on HMM prediction systems.</p></div>\",\"PeriodicalId\":34311,\"journal\":{\"name\":\"Measurement Sensors\",\"volume\":\"34 \",\"pages\":\"Article 101258\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665917424002344/pdfft?md5=5c71dc500128e6060d780cde04d6fdfd&pid=1-s2.0-S2665917424002344-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665917424002344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665917424002344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

由于云资源的弹性,客户可以随着时间的推移动态地增加或减少其使用的资源数量。因此,资源需求的变化和预定义的虚拟机大小会导致资源利用不足、负载不平衡和功耗过高。为解决这些问题,我们提出了一个高效资源管理框架,以相应地平衡负载并预测服务器的资源利用率。通过优化资源利用率和最大限度地减少活动服务器的数量,该技术有助于节约电能。通过部署在中央处理器上的资源预测系统,负载不足/过载的服务器可减少能耗、执行延迟和性能下降。此外,还提出了 OCL-MEC 负载均衡和资源分配算法,以减少数据中心的网络流量和功耗。在真实工作负载数据集(即 Bitsbrain 虚拟机跟踪)上进行了实验,以评估所提出的框架。不同的性能指标证明了所提出的框架优于最先进的方法。使用基于 HMM 预测系统的决策树负载平衡模型,OCL-MEC 框架可实现高达 98% 的功率节省。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
OCL-MEC: An online CPU-core prediction based on load balancing framework for offloading resource management in mobile edge computing environment

Clients can increase or decrease the number of resources they use dynamically over time due to the elasticity of cloud resources. As a result, variations in resource demands and predefined VM sizes result in a lack of resource utiliation, load imbalances, and excessive power consumption. A framework of efficient resource management is proposed to address these issues, balancing the load accordingly and anticipating the resource utilization of the servers. By optimizing resource utilization and minimizing the number of active servers, this technique facilitates power savings. Under/overloaded servers reduce energy consumption, execution delay, and performance degradation through a resource prediction system that is deployed at the CPU. Moreover, OCL-MEC load-balancing and resource allocation algorithms are proposed to reduce data center network traffic and power consumption. Experiments on real-world workload datasets, namely Bitsbrain VM traces, are conducted to evaluate the proposed framework. Different performance metrics demonstrate the superiority of the proposed framework over state-of-the-art approaches. Power savings of up to 98 % can be achieved by the OCL-MEC framework using a decision tree load balancing model based on HMM prediction systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Measurement Sensors
Measurement Sensors Engineering-Industrial and Manufacturing Engineering
CiteScore
3.10
自引率
0.00%
发文量
184
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信