母乳喂养和非母乳喂养儿童轮状病毒感染的最佳控制方法

Q3 Mathematics
Kunwer Singh Mathur , Vinita Dwivedi
{"title":"母乳喂养和非母乳喂养儿童轮状病毒感染的最佳控制方法","authors":"Kunwer Singh Mathur ,&nbsp;Vinita Dwivedi","doi":"10.1016/j.rico.2024.100452","DOIUrl":null,"url":null,"abstract":"<div><p>According to the World Health Organization’s guidelines, a two-year mandatory breastfeeding period is strongly recommended, supported by research demonstrating its significant benefits in reducing childhood illnesses and mortality rates. The present study is designed to address this recommendation by focusing on a specific infection, namely rotavirus. Acknowledging this evidence, researchers recognize the need for a deeper understanding of the dynamics of rotavirus disease. In response, our study focuses on constructing and analyzing an SIR epidemic model uniquely designed for transmitting rotavirus in children. The model partitions the children population into three compartments: susceptible, infected, and recovered. To enhance precision, we further categorize susceptible children based on breastfeeding status and infected individuals based on infectious or non-infectious nature. This detailed categorization enables a thorough examination of rotavirus transmission dynamics. The proposed model analyzes two equilibria, disease-free and endemic, revealing local and global stability conditions determined by the basic reproduction number (<span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>). Our exploration extends to local stability analysis for the endemic equilibrium when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span> and global stability assessment using the Lyapunov theory under specific conditions. Subsequently, we employ optimal control theory through Pontryagin’s maximum principle to minimize the cost burden associated with disease control in children. Then, our work provides a sensitivity analysis of different parameters for the basic reproduction number to enhance our understanding of model dynamics. Finally, numerical simulations conducted with MATLAB and Python software validate our analytical findings, offering a comprehensive and practical assessment of the proposed model’s implications for controlling rotavirus transmission in children.</p></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"16 ","pages":"Article 100452"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666720724000821/pdfft?md5=c3e6d2f897eb860623774f672adba5a0&pid=1-s2.0-S2666720724000821-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimal control of rotavirus infection in breastfed and non-breastfed children\",\"authors\":\"Kunwer Singh Mathur ,&nbsp;Vinita Dwivedi\",\"doi\":\"10.1016/j.rico.2024.100452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>According to the World Health Organization’s guidelines, a two-year mandatory breastfeeding period is strongly recommended, supported by research demonstrating its significant benefits in reducing childhood illnesses and mortality rates. The present study is designed to address this recommendation by focusing on a specific infection, namely rotavirus. Acknowledging this evidence, researchers recognize the need for a deeper understanding of the dynamics of rotavirus disease. In response, our study focuses on constructing and analyzing an SIR epidemic model uniquely designed for transmitting rotavirus in children. The model partitions the children population into three compartments: susceptible, infected, and recovered. To enhance precision, we further categorize susceptible children based on breastfeeding status and infected individuals based on infectious or non-infectious nature. This detailed categorization enables a thorough examination of rotavirus transmission dynamics. The proposed model analyzes two equilibria, disease-free and endemic, revealing local and global stability conditions determined by the basic reproduction number (<span><math><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub></math></span>). Our exploration extends to local stability analysis for the endemic equilibrium when <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>&gt;</mo><mn>1</mn></mrow></math></span> and global stability assessment using the Lyapunov theory under specific conditions. Subsequently, we employ optimal control theory through Pontryagin’s maximum principle to minimize the cost burden associated with disease control in children. Then, our work provides a sensitivity analysis of different parameters for the basic reproduction number to enhance our understanding of model dynamics. Finally, numerical simulations conducted with MATLAB and Python software validate our analytical findings, offering a comprehensive and practical assessment of the proposed model’s implications for controlling rotavirus transmission in children.</p></div>\",\"PeriodicalId\":34733,\"journal\":{\"name\":\"Results in Control and Optimization\",\"volume\":\"16 \",\"pages\":\"Article 100452\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666720724000821/pdfft?md5=c3e6d2f897eb860623774f672adba5a0&pid=1-s2.0-S2666720724000821-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Control and Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666720724000821\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724000821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

根据世界卫生组织的指导原则,强烈建议母乳喂养期为两年,研究表明母乳喂养对减少儿童疾病和死亡率大有裨益。本研究的目的就是针对这一建议,重点研究一种特定的感染,即轮状病毒。鉴于这一证据,研究人员认识到需要更深入地了解轮状病毒疾病的动态变化。为此,我们的研究侧重于构建和分析一个 SIR 流行病模型,该模型是专为轮状病毒在儿童中的传播而设计的。该模型将儿童群体分为三个部分:易感者、感染者和康复者。为了提高精确度,我们还根据母乳喂养情况对易感儿童进行了进一步分类,并根据传染性或非传染性对感染者进行了分类。通过这种详细的分类,我们可以对轮状病毒的传播动态进行深入研究。所提出的模型分析了无病和流行两种平衡状态,揭示了由基本繁殖数(R0)决定的局部和全局稳定性条件。我们的探索延伸到了 R0>1 时地方性平衡的局部稳定性分析,以及在特定条件下利用 Lyapunov 理论进行的全局稳定性评估。随后,我们通过庞特里亚金最大原则运用最优控制理论,最大限度地降低与儿童疾病控制相关的成本负担。然后,我们的工作对基本繁殖数的不同参数进行了敏感性分析,以加深我们对模型动态的理解。最后,使用 MATLAB 和 Python 软件进行的数值模拟验证了我们的分析结果,为拟议模型对控制儿童轮状病毒传播的影响提供了全面而实用的评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimal control of rotavirus infection in breastfed and non-breastfed children

According to the World Health Organization’s guidelines, a two-year mandatory breastfeeding period is strongly recommended, supported by research demonstrating its significant benefits in reducing childhood illnesses and mortality rates. The present study is designed to address this recommendation by focusing on a specific infection, namely rotavirus. Acknowledging this evidence, researchers recognize the need for a deeper understanding of the dynamics of rotavirus disease. In response, our study focuses on constructing and analyzing an SIR epidemic model uniquely designed for transmitting rotavirus in children. The model partitions the children population into three compartments: susceptible, infected, and recovered. To enhance precision, we further categorize susceptible children based on breastfeeding status and infected individuals based on infectious or non-infectious nature. This detailed categorization enables a thorough examination of rotavirus transmission dynamics. The proposed model analyzes two equilibria, disease-free and endemic, revealing local and global stability conditions determined by the basic reproduction number (R0). Our exploration extends to local stability analysis for the endemic equilibrium when R0>1 and global stability assessment using the Lyapunov theory under specific conditions. Subsequently, we employ optimal control theory through Pontryagin’s maximum principle to minimize the cost burden associated with disease control in children. Then, our work provides a sensitivity analysis of different parameters for the basic reproduction number to enhance our understanding of model dynamics. Finally, numerical simulations conducted with MATLAB and Python software validate our analytical findings, offering a comprehensive and practical assessment of the proposed model’s implications for controlling rotavirus transmission in children.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信