{"title":"论路径相关图的一些族及其边缘度量维度","authors":"Lianglin Li, Shu Bao, Hassan Raza","doi":"10.1016/j.exco.2024.100152","DOIUrl":null,"url":null,"abstract":"<div><p>Locating the origin of diffusion in complex networks is an interesting but challenging task. It is crucial for anticipating and constraining the epidemic risks. Source localization has been considered under many feasible models. In this paper, we study the localization problem in some path-related graphs and study the edge metric dimension. A subset <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>⊆</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msub></mrow></math></span> is known as an edge metric generator for <span><math><mi>G</mi></math></span> if, for any two distinct edges <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>E</mi></mrow></math></span>, there exists a vertex <span><math><mrow><mi>a</mi><mo>⊆</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>E</mi></mrow></msub></mrow></math></span> such that <span><math><mrow><mi>d</mi><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>a</mi><mo>)</mo></mrow><mo>≠</mo><mi>d</mi><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>a</mi><mo>)</mo></mrow></mrow></math></span>. An edge metric generator that contains the minimum number of vertices is termed an edge metric basis for <span><math><mi>G</mi></math></span>, and the number of vertices in such a basis is called the edge metric dimension, denoted by <span><math><mrow><mi>d</mi><mi>i</mi><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. An edge metric generator with the fewest vertices is called an edge metric basis for <span><math><mi>G</mi></math></span>. The number of vertices in such a basis is the edge metric dimension, represented as <span><math><mrow><mi>d</mi><mi>i</mi><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, the edge metric dimension of some path-related graphs is computed, namely, the middle graph of path <span><math><mrow><mi>M</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> and the splitting graph of path <span><math><mrow><mi>S</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>.</p></div>","PeriodicalId":100517,"journal":{"name":"Examples and Counterexamples","volume":"6 ","pages":"Article 100152"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666657X24000181/pdfft?md5=c2a7ee3861dc78370607917771d98ef6&pid=1-s2.0-S2666657X24000181-main.pdf","citationCount":"0","resultStr":"{\"title\":\"On Some families of Path-related graphs with their edge metric dimension\",\"authors\":\"Lianglin Li, Shu Bao, Hassan Raza\",\"doi\":\"10.1016/j.exco.2024.100152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Locating the origin of diffusion in complex networks is an interesting but challenging task. It is crucial for anticipating and constraining the epidemic risks. Source localization has been considered under many feasible models. In this paper, we study the localization problem in some path-related graphs and study the edge metric dimension. A subset <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>E</mi></mrow></msub><mo>⊆</mo><msub><mrow><mi>V</mi></mrow><mrow><mi>G</mi></mrow></msub></mrow></math></span> is known as an edge metric generator for <span><math><mi>G</mi></math></span> if, for any two distinct edges <span><math><mrow><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mi>E</mi></mrow></math></span>, there exists a vertex <span><math><mrow><mi>a</mi><mo>⊆</mo><msub><mrow><mi>L</mi></mrow><mrow><mi>E</mi></mrow></msub></mrow></math></span> such that <span><math><mrow><mi>d</mi><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>a</mi><mo>)</mo></mrow><mo>≠</mo><mi>d</mi><mrow><mo>(</mo><msub><mrow><mi>e</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>a</mi><mo>)</mo></mrow></mrow></math></span>. An edge metric generator that contains the minimum number of vertices is termed an edge metric basis for <span><math><mi>G</mi></math></span>, and the number of vertices in such a basis is called the edge metric dimension, denoted by <span><math><mrow><mi>d</mi><mi>i</mi><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. An edge metric generator with the fewest vertices is called an edge metric basis for <span><math><mi>G</mi></math></span>. The number of vertices in such a basis is the edge metric dimension, represented as <span><math><mrow><mi>d</mi><mi>i</mi><msub><mrow><mi>m</mi></mrow><mrow><mi>e</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, the edge metric dimension of some path-related graphs is computed, namely, the middle graph of path <span><math><mrow><mi>M</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> and the splitting graph of path <span><math><mrow><mi>S</mi><mrow><mo>(</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>.</p></div>\",\"PeriodicalId\":100517,\"journal\":{\"name\":\"Examples and Counterexamples\",\"volume\":\"6 \",\"pages\":\"Article 100152\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666657X24000181/pdfft?md5=c2a7ee3861dc78370607917771d98ef6&pid=1-s2.0-S2666657X24000181-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Examples and Counterexamples\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666657X24000181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Examples and Counterexamples","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666657X24000181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
确定复杂网络中的扩散源是一项有趣但极具挑战性的任务。它对于预测和限制流行病风险至关重要。在许多可行的模型中都考虑了源定位问题。本文研究了一些路径相关图中的定位问题,并对边缘度量维度进行了研究。如果对于任意两条不同的边 e1、e2∈E,存在一个顶点 a⊆LE,使得 d(e1,a)≠d(e2,a),则子集 LE⊆VG 称为 G 的边度量生成器。包含最少顶点数的边缘度量生成器称为 G 的边缘度量基,这样的基中的顶点数称为边缘度量维度,用 dime(G) 表示。顶点数量最少的边度量生成器称为 G 的边度量基,这样的基中的顶点数量就是边度量维度,用 dime(G) 表示。本文将计算一些路径相关图的边度量维度,即路径 M(Pn) 的中间图和路径 S(Pn) 的分割图。
On Some families of Path-related graphs with their edge metric dimension
Locating the origin of diffusion in complex networks is an interesting but challenging task. It is crucial for anticipating and constraining the epidemic risks. Source localization has been considered under many feasible models. In this paper, we study the localization problem in some path-related graphs and study the edge metric dimension. A subset is known as an edge metric generator for if, for any two distinct edges , there exists a vertex such that . An edge metric generator that contains the minimum number of vertices is termed an edge metric basis for , and the number of vertices in such a basis is called the edge metric dimension, denoted by . An edge metric generator with the fewest vertices is called an edge metric basis for . The number of vertices in such a basis is the edge metric dimension, represented as . In this paper, the edge metric dimension of some path-related graphs is computed, namely, the middle graph of path and the splitting graph of path .