用于 CT 图像肺部感染和淋巴瘤分类的位置增强序列特征编码模型。

IF 2.3 3区 医学 Q3 ENGINEERING, BIOMEDICAL
Rui Zhao, Wenhao Li, Xilai Chen, Yuchong Li, Baochun He, Yucong Zhang, Yu Deng, Chunyan Wang, Fucang Jia
{"title":"用于 CT 图像肺部感染和淋巴瘤分类的位置增强序列特征编码模型。","authors":"Rui Zhao, Wenhao Li, Xilai Chen, Yuchong Li, Baochun He, Yucong Zhang, Yu Deng, Chunyan Wang, Fucang Jia","doi":"10.1007/s11548-024-03230-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Differentiating pulmonary lymphoma from lung infections using CT images is challenging. Existing deep neural network-based lung CT classification models rely on 2D slices, lacking comprehensive information and requiring manual selection. 3D models that involve chunking compromise image information and struggle with parameter reduction, limiting performance. These limitations must be addressed to improve accuracy and practicality.</p><p><strong>Methods: </strong>We propose a transformer sequential feature encoding structure to integrate multi-level information from complete CT images, inspired by the clinical practice of using a sequence of cross-sectional slices for diagnosis. We incorporate position encoding and cross-level long-range information fusion modules into the feature extraction CNN network for cross-sectional slices, ensuring high-precision feature extraction.</p><p><strong>Results: </strong>We conducted comprehensive experiments on a dataset of 124 patients, with respective sizes of 64, 20 and 40 for training, validation and testing. The results of ablation experiments and comparative experiments demonstrated the effectiveness of our approach. Our method outperforms existing state-of-the-art methods in the 3D CT image classification problem of distinguishing between lung infections and pulmonary lymphoma, achieving an accuracy of 0.875, AUC of 0.953 and F1 score of 0.889.</p><p><strong>Conclusion: </strong>The experiments verified that our proposed position-enhanced transformer-based sequential feature encoding model is capable of effectively performing high-precision feature extraction and contextual feature fusion in the lungs. It enhances the ability of a standalone CNN network or transformer to extract features, thereby improving the classification performance. The source code is accessible at https://github.com/imchuyu/PTSFE .</p>","PeriodicalId":51251,"journal":{"name":"International Journal of Computer Assisted Radiology and Surgery","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A position-enhanced sequential feature encoding model for lung infections and lymphoma classification on CT images.\",\"authors\":\"Rui Zhao, Wenhao Li, Xilai Chen, Yuchong Li, Baochun He, Yucong Zhang, Yu Deng, Chunyan Wang, Fucang Jia\",\"doi\":\"10.1007/s11548-024-03230-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Differentiating pulmonary lymphoma from lung infections using CT images is challenging. Existing deep neural network-based lung CT classification models rely on 2D slices, lacking comprehensive information and requiring manual selection. 3D models that involve chunking compromise image information and struggle with parameter reduction, limiting performance. These limitations must be addressed to improve accuracy and practicality.</p><p><strong>Methods: </strong>We propose a transformer sequential feature encoding structure to integrate multi-level information from complete CT images, inspired by the clinical practice of using a sequence of cross-sectional slices for diagnosis. We incorporate position encoding and cross-level long-range information fusion modules into the feature extraction CNN network for cross-sectional slices, ensuring high-precision feature extraction.</p><p><strong>Results: </strong>We conducted comprehensive experiments on a dataset of 124 patients, with respective sizes of 64, 20 and 40 for training, validation and testing. The results of ablation experiments and comparative experiments demonstrated the effectiveness of our approach. Our method outperforms existing state-of-the-art methods in the 3D CT image classification problem of distinguishing between lung infections and pulmonary lymphoma, achieving an accuracy of 0.875, AUC of 0.953 and F1 score of 0.889.</p><p><strong>Conclusion: </strong>The experiments verified that our proposed position-enhanced transformer-based sequential feature encoding model is capable of effectively performing high-precision feature extraction and contextual feature fusion in the lungs. It enhances the ability of a standalone CNN network or transformer to extract features, thereby improving the classification performance. The source code is accessible at https://github.com/imchuyu/PTSFE .</p>\",\"PeriodicalId\":51251,\"journal\":{\"name\":\"International Journal of Computer Assisted Radiology and Surgery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Computer Assisted Radiology and Surgery\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11548-024-03230-y\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Assisted Radiology and Surgery","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11548-024-03230-y","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

目的:利用 CT 图像区分肺淋巴瘤和肺部感染具有挑战性。现有的基于深度神经网络的肺部 CT 分类模型依赖于二维切片,缺乏全面的信息,需要人工选择。涉及分块的三维模型会损害图像信息,并在减少参数方面遇到困难,从而限制了性能。要提高准确性和实用性,就必须解决这些局限性:我们提出了一种变压器序列特征编码结构,以整合完整 CT 图像中的多层次信息,其灵感来源于使用横断面切片序列进行诊断的临床实践。我们在横断面切片的特征提取 CNN 网络中加入了位置编码和跨级别长距离信息融合模块,确保了高精度的特征提取:我们对 124 名患者的数据集进行了综合实验,训练、验证和测试的数据集分别为 64、20 和 40。消融实验和对比实验的结果证明了我们方法的有效性。在区分肺部感染和肺淋巴瘤的三维 CT 图像分类问题上,我们的方法优于现有的最先进方法,准确率达到 0.875,AUC 达到 0.953,F1 分数达到 0.889:实验验证了我们提出的基于位置增强变换器的序列特征编码模型能够有效地进行肺部高精度特征提取和上下文特征融合。它增强了独立 CNN 网络或变换器提取特征的能力,从而提高了分类性能。源代码可从以下网址获取:https://github.com/imchuyu/PTSFE 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A position-enhanced sequential feature encoding model for lung infections and lymphoma classification on CT images.

A position-enhanced sequential feature encoding model for lung infections and lymphoma classification on CT images.

Purpose: Differentiating pulmonary lymphoma from lung infections using CT images is challenging. Existing deep neural network-based lung CT classification models rely on 2D slices, lacking comprehensive information and requiring manual selection. 3D models that involve chunking compromise image information and struggle with parameter reduction, limiting performance. These limitations must be addressed to improve accuracy and practicality.

Methods: We propose a transformer sequential feature encoding structure to integrate multi-level information from complete CT images, inspired by the clinical practice of using a sequence of cross-sectional slices for diagnosis. We incorporate position encoding and cross-level long-range information fusion modules into the feature extraction CNN network for cross-sectional slices, ensuring high-precision feature extraction.

Results: We conducted comprehensive experiments on a dataset of 124 patients, with respective sizes of 64, 20 and 40 for training, validation and testing. The results of ablation experiments and comparative experiments demonstrated the effectiveness of our approach. Our method outperforms existing state-of-the-art methods in the 3D CT image classification problem of distinguishing between lung infections and pulmonary lymphoma, achieving an accuracy of 0.875, AUC of 0.953 and F1 score of 0.889.

Conclusion: The experiments verified that our proposed position-enhanced transformer-based sequential feature encoding model is capable of effectively performing high-precision feature extraction and contextual feature fusion in the lungs. It enhances the ability of a standalone CNN network or transformer to extract features, thereby improving the classification performance. The source code is accessible at https://github.com/imchuyu/PTSFE .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Computer Assisted Radiology and Surgery
International Journal of Computer Assisted Radiology and Surgery ENGINEERING, BIOMEDICAL-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
5.90
自引率
6.70%
发文量
243
审稿时长
6-12 weeks
期刊介绍: The International Journal for Computer Assisted Radiology and Surgery (IJCARS) is a peer-reviewed journal that provides a platform for closing the gap between medical and technical disciplines, and encourages interdisciplinary research and development activities in an international environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信