大黄黄连解毒汤通过抑制内质网应激,调节脂肪细胞分化和脂质降解,从而改善肥胖症。

IF 2.5 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
{"title":"大黄黄连解毒汤通过抑制内质网应激,调节脂肪细胞分化和脂质降解,从而改善肥胖症。","authors":"","doi":"10.1016/j.prostaglandins.2024.106874","DOIUrl":null,"url":null,"abstract":"<div><p>Dahuang Huanglian Xiexin Decoction (DHXD) is the representative clinical formula for treating epigastric oppression. In this study, we aim to explore the effect of DHXD on obesity and attempt to investigate its potential mechanism. 3T3-L1 preadipocytes were differentiated and high-fat diet-induced obese rat model was established. DHXD was used for treatment and tunicamycin, the activator of endoplasmic reticulum (ER) stress, was adopted to investigate the related regulatory mechanism. Cell viability was evaluated using CCK-8 assay. Oil-Red O staining was performed to determine lipid accumulation. Glycerol production and Triglyceride content were measured using their commercial kits. Western blot was conducted to examine the expression of critical proteins. Results indicated that DHXD could greatly reduce intracellular lipid droplets and triglyceride in differentiated 3T3-L1 cells. Moreover, the elevated expression of mature adipocytes markers, PPARγ, aP2, during adipogenesis was decreased by DHXD treatment. In addition, DHXD aggravated the lipolysis in differentiated 3T3-L1 cells, as evidenced by the upregulated ATGL expression and the downregulated HSL expression. Besides, DHXD inhibited endoplasmic reticulum (ER) stress in 3T3-L1 cells. Further experiments indicated that the impacts of DHXD on adipocyte differentiation and lipid degradation were partly abolished by tunicamycin. Finally, DHXD alleviated lipid accumulation and ER stress in obese rats. In conclusion, DHXD ameliorates obesity via modulating adipocyte differentiation and lipid degradation through inhibiting ER stress.</p></div>","PeriodicalId":21161,"journal":{"name":"Prostaglandins & other lipid mediators","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dahuang Huanglian Xiexin Decoction ameliorates obesity via modulating adipocyte differentiation and lipid degradation through inhibiting endoplasmic reticulum stress\",\"authors\":\"\",\"doi\":\"10.1016/j.prostaglandins.2024.106874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Dahuang Huanglian Xiexin Decoction (DHXD) is the representative clinical formula for treating epigastric oppression. In this study, we aim to explore the effect of DHXD on obesity and attempt to investigate its potential mechanism. 3T3-L1 preadipocytes were differentiated and high-fat diet-induced obese rat model was established. DHXD was used for treatment and tunicamycin, the activator of endoplasmic reticulum (ER) stress, was adopted to investigate the related regulatory mechanism. Cell viability was evaluated using CCK-8 assay. Oil-Red O staining was performed to determine lipid accumulation. Glycerol production and Triglyceride content were measured using their commercial kits. Western blot was conducted to examine the expression of critical proteins. Results indicated that DHXD could greatly reduce intracellular lipid droplets and triglyceride in differentiated 3T3-L1 cells. Moreover, the elevated expression of mature adipocytes markers, PPARγ, aP2, during adipogenesis was decreased by DHXD treatment. In addition, DHXD aggravated the lipolysis in differentiated 3T3-L1 cells, as evidenced by the upregulated ATGL expression and the downregulated HSL expression. Besides, DHXD inhibited endoplasmic reticulum (ER) stress in 3T3-L1 cells. Further experiments indicated that the impacts of DHXD on adipocyte differentiation and lipid degradation were partly abolished by tunicamycin. Finally, DHXD alleviated lipid accumulation and ER stress in obese rats. In conclusion, DHXD ameliorates obesity via modulating adipocyte differentiation and lipid degradation through inhibiting ER stress.</p></div>\",\"PeriodicalId\":21161,\"journal\":{\"name\":\"Prostaglandins & other lipid mediators\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Prostaglandins & other lipid mediators\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1098882324000686\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Prostaglandins & other lipid mediators","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1098882324000686","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

大黄黄连解毒汤(DHXD)是治疗上腹压迫症状的临床代表方剂。本研究旨在探讨大黄黄连解毒汤对肥胖的影响,并尝试研究其潜在机制。研究人员分化了 3T3-L1 前脂肪细胞,并建立了高脂饮食诱导的肥胖大鼠模型。使用 DHXD 进行治疗,并采用内质网(ER)应激激活剂妥尼霉素研究相关调控机制。使用 CCK-8 检测法评估细胞活力。油红 O 染色法测定脂质积累。甘油生成量和甘油三酯含量用商品试剂盒测定。采用 Western 印迹法检测关键蛋白的表达。结果表明,DHXD 能大大减少分化的 3T3-L1 细胞中的细胞内脂滴和甘油三酯。此外,成熟脂肪细胞标志物 PPARγ、aP2 在脂肪生成过程中的升高表达也因 DHXD 的处理而降低。此外,DHXD 还加剧了分化的 3T3-L1 细胞的脂肪分解,这表现在 ATGL 表达的上调和 HSL 表达的下调。此外,DHXD 还能抑制 3T3-L1 细胞的内质网(ER)应激。进一步的实验表明,DHXD 对脂肪细胞分化和脂质降解的影响在一定程度上被曲安奈德所消除。最后,DHXD 可减轻肥胖大鼠的脂质积累和 ER 压力。总之,DHXD通过抑制ER应激调节脂肪细胞分化和脂质降解,从而改善肥胖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dahuang Huanglian Xiexin Decoction ameliorates obesity via modulating adipocyte differentiation and lipid degradation through inhibiting endoplasmic reticulum stress

Dahuang Huanglian Xiexin Decoction (DHXD) is the representative clinical formula for treating epigastric oppression. In this study, we aim to explore the effect of DHXD on obesity and attempt to investigate its potential mechanism. 3T3-L1 preadipocytes were differentiated and high-fat diet-induced obese rat model was established. DHXD was used for treatment and tunicamycin, the activator of endoplasmic reticulum (ER) stress, was adopted to investigate the related regulatory mechanism. Cell viability was evaluated using CCK-8 assay. Oil-Red O staining was performed to determine lipid accumulation. Glycerol production and Triglyceride content were measured using their commercial kits. Western blot was conducted to examine the expression of critical proteins. Results indicated that DHXD could greatly reduce intracellular lipid droplets and triglyceride in differentiated 3T3-L1 cells. Moreover, the elevated expression of mature adipocytes markers, PPARγ, aP2, during adipogenesis was decreased by DHXD treatment. In addition, DHXD aggravated the lipolysis in differentiated 3T3-L1 cells, as evidenced by the upregulated ATGL expression and the downregulated HSL expression. Besides, DHXD inhibited endoplasmic reticulum (ER) stress in 3T3-L1 cells. Further experiments indicated that the impacts of DHXD on adipocyte differentiation and lipid degradation were partly abolished by tunicamycin. Finally, DHXD alleviated lipid accumulation and ER stress in obese rats. In conclusion, DHXD ameliorates obesity via modulating adipocyte differentiation and lipid degradation through inhibiting ER stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Prostaglandins & other lipid mediators
Prostaglandins & other lipid mediators 生物-生化与分子生物学
CiteScore
5.80
自引率
3.40%
发文量
49
审稿时长
2 months
期刊介绍: Prostaglandins & Other Lipid Mediators is the original and foremost journal dealing with prostaglandins and related lipid mediator substances. It includes basic and clinical studies related to the pharmacology, physiology, pathology and biochemistry of lipid mediators. Prostaglandins & Other Lipid Mediators invites reports of original research, mini-reviews, reviews, and methods articles in the basic and clinical aspects of all areas of lipid mediator research: cell biology, developmental biology, genetics, molecular biology, chemistry, biochemistry, physiology, pharmacology, endocrinology, biology, the medical sciences, and epidemiology. Prostaglandins & Other Lipid Mediators also accepts proposals for special issue topics. The Editors will make every effort to advise authors of the decision on the submitted manuscript within 3-4 weeks of receipt.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信