{"title":"探究血清素 1A 受体脂质相互作用的能量分布。","authors":"Madhura Mohole , Amit Naglekar , Durba Sengupta , Amitabha Chattopadhyay","doi":"10.1016/j.bpc.2024.107289","DOIUrl":null,"url":null,"abstract":"<div><p>G protein-coupled receptors (GPCRs) are lipid-regulated transmembrane proteins that play a central role in cell signaling and pharmacology. Although the role of membrane lipids in GPCR function is well established, the underlying GPCR-lipid interactions have not been thermodynamically characterized due to the complexity of these interactions. In this work, we estimate the energetics and dynamics of lipid association from coarse-grain simulations of the serotonin<sub>1A</sub> receptor embedded in a complex membrane. We show that lipids bind to the receptor with varying energetics of 1–4 kT, and timescales of 1–10 μs. The most favorable energetics and longest residence times are observed for cholesterol, glycosphingolipid GM1, phosphatidylethanolamine (PE) and phosphatidylserine (PS) lipids. Multi-exponential fitting of the contact probability suggests distinct dynamic regimes, corresponding to ps, ns and μs timescales, that we correlate with the annular, intermediate and non-annular lipid sites. The timescales of lipid binding correspond to high barrier heights, despite their relatively weaker energetics. Our results highlight that GPCR-lipid interactions are driven by both thermodynamic interactions and the dynamical features of lipid binding.</p></div>","PeriodicalId":8979,"journal":{"name":"Biophysical chemistry","volume":null,"pages":null},"PeriodicalIF":3.3000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probing the energy landscape of the lipid interactions of the Serotonin1A receptor\",\"authors\":\"Madhura Mohole , Amit Naglekar , Durba Sengupta , Amitabha Chattopadhyay\",\"doi\":\"10.1016/j.bpc.2024.107289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>G protein-coupled receptors (GPCRs) are lipid-regulated transmembrane proteins that play a central role in cell signaling and pharmacology. Although the role of membrane lipids in GPCR function is well established, the underlying GPCR-lipid interactions have not been thermodynamically characterized due to the complexity of these interactions. In this work, we estimate the energetics and dynamics of lipid association from coarse-grain simulations of the serotonin<sub>1A</sub> receptor embedded in a complex membrane. We show that lipids bind to the receptor with varying energetics of 1–4 kT, and timescales of 1–10 μs. The most favorable energetics and longest residence times are observed for cholesterol, glycosphingolipid GM1, phosphatidylethanolamine (PE) and phosphatidylserine (PS) lipids. Multi-exponential fitting of the contact probability suggests distinct dynamic regimes, corresponding to ps, ns and μs timescales, that we correlate with the annular, intermediate and non-annular lipid sites. The timescales of lipid binding correspond to high barrier heights, despite their relatively weaker energetics. Our results highlight that GPCR-lipid interactions are driven by both thermodynamic interactions and the dynamical features of lipid binding.</p></div>\",\"PeriodicalId\":8979,\"journal\":{\"name\":\"Biophysical chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biophysical chemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301462224001182\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biophysical chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301462224001182","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Probing the energy landscape of the lipid interactions of the Serotonin1A receptor
G protein-coupled receptors (GPCRs) are lipid-regulated transmembrane proteins that play a central role in cell signaling and pharmacology. Although the role of membrane lipids in GPCR function is well established, the underlying GPCR-lipid interactions have not been thermodynamically characterized due to the complexity of these interactions. In this work, we estimate the energetics and dynamics of lipid association from coarse-grain simulations of the serotonin1A receptor embedded in a complex membrane. We show that lipids bind to the receptor with varying energetics of 1–4 kT, and timescales of 1–10 μs. The most favorable energetics and longest residence times are observed for cholesterol, glycosphingolipid GM1, phosphatidylethanolamine (PE) and phosphatidylserine (PS) lipids. Multi-exponential fitting of the contact probability suggests distinct dynamic regimes, corresponding to ps, ns and μs timescales, that we correlate with the annular, intermediate and non-annular lipid sites. The timescales of lipid binding correspond to high barrier heights, despite their relatively weaker energetics. Our results highlight that GPCR-lipid interactions are driven by both thermodynamic interactions and the dynamical features of lipid binding.
期刊介绍:
Biophysical Chemistry publishes original work and reviews in the areas of chemistry and physics directly impacting biological phenomena. Quantitative analysis of the properties of biological macromolecules, biologically active molecules, macromolecular assemblies and cell components in terms of kinetics, thermodynamics, spatio-temporal organization, NMR and X-ray structural biology, as well as single-molecule detection represent a major focus of the journal. Theoretical and computational treatments of biomacromolecular systems, macromolecular interactions, regulatory control and systems biology are also of interest to the journal.