工业物联网网络中高斯源的深度学习辅助最小均方误差估计

Majumder Haider;Md. Zoheb Hassan;Imtiaz Ahmed;Jeffrey H. Reed;Ahmed Rubaai;Danda B. Rawat
{"title":"工业物联网网络中高斯源的深度学习辅助最小均方误差估计","authors":"Majumder Haider;Md. Zoheb Hassan;Imtiaz Ahmed;Jeffrey H. Reed;Ahmed Rubaai;Danda B. Rawat","doi":"10.1109/TICPS.2024.3420823","DOIUrl":null,"url":null,"abstract":"This article investigates the problem of estimating complex-valued Gaussian signals in an industrial Internet of Things (IIoT) environment, where the channel fading is temporally correlated and modeled by a finite state Markov process. To address the non-trivial problem of estimating channel fading states and signals simultaneously, we propose two deep learning (DL)-aided minimum mean square error (MMSE) estimation schemes. More specifically, our proposed framework consists of two steps, (i) a DL-aided channel fading state estimation and prediction step, followed by (ii) a linear MMSE estimation step to estimate the source signals for the learned channel fading states. Our proposed framework employs three DL models, namely the fully connected deep neural network (DNN), long short-term memory (LSTM) integrated DNN, and temporal convolution network (TCN). Extensive simulations show that these three DL models achieve similar accuracy in predicting the states of wireless fading channels. Our proposed data-driven approaches exhibit a reasonable performance gap in normalized mean square error (NMSE) compared to the genie-aided scheme, which considers perfect knowledge of instantaneous channel fading states.","PeriodicalId":100640,"journal":{"name":"IEEE Transactions on Industrial Cyber-Physical Systems","volume":"2 ","pages":"185-195"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Aided Minimum Mean Square Error Estimation of Gaussian Source in Industrial Internet-of-Things Networks\",\"authors\":\"Majumder Haider;Md. Zoheb Hassan;Imtiaz Ahmed;Jeffrey H. Reed;Ahmed Rubaai;Danda B. Rawat\",\"doi\":\"10.1109/TICPS.2024.3420823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article investigates the problem of estimating complex-valued Gaussian signals in an industrial Internet of Things (IIoT) environment, where the channel fading is temporally correlated and modeled by a finite state Markov process. To address the non-trivial problem of estimating channel fading states and signals simultaneously, we propose two deep learning (DL)-aided minimum mean square error (MMSE) estimation schemes. More specifically, our proposed framework consists of two steps, (i) a DL-aided channel fading state estimation and prediction step, followed by (ii) a linear MMSE estimation step to estimate the source signals for the learned channel fading states. Our proposed framework employs three DL models, namely the fully connected deep neural network (DNN), long short-term memory (LSTM) integrated DNN, and temporal convolution network (TCN). Extensive simulations show that these three DL models achieve similar accuracy in predicting the states of wireless fading channels. Our proposed data-driven approaches exhibit a reasonable performance gap in normalized mean square error (NMSE) compared to the genie-aided scheme, which considers perfect knowledge of instantaneous channel fading states.\",\"PeriodicalId\":100640,\"journal\":{\"name\":\"IEEE Transactions on Industrial Cyber-Physical Systems\",\"volume\":\"2 \",\"pages\":\"185-195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Industrial Cyber-Physical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10579043/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Industrial Cyber-Physical Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10579043/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在工业物联网(IIoT)环境中估计复值高斯信号的问题,在这种环境中,信道衰落具有时间相关性,并由有限状态马尔可夫过程建模。为了解决同时估计信道衰落状态和信号这一棘手问题,我们提出了两种深度学习(DL)辅助的最小均方误差(MMSE)估计方案。更具体地说,我们提出的框架包括两个步骤:(i) DL 辅助的信道衰落状态估计和预测步骤,然后是 (ii) 线性 MMSE 估计步骤,以估计所学信道衰落状态的源信号。我们提出的框架采用了三种 DL 模型,即全连接深度神经网络 (DNN)、长短期记忆 (LSTM) 集成 DNN 和时序卷积网络 (TCN)。广泛的仿真表明,这三种 DL 模型在预测无线衰落信道状态方面具有相似的准确性。与精灵辅助方案相比,我们提出的数据驱动方法在归一化均方误差(NMSE)方面表现出合理的性能差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Aided Minimum Mean Square Error Estimation of Gaussian Source in Industrial Internet-of-Things Networks
This article investigates the problem of estimating complex-valued Gaussian signals in an industrial Internet of Things (IIoT) environment, where the channel fading is temporally correlated and modeled by a finite state Markov process. To address the non-trivial problem of estimating channel fading states and signals simultaneously, we propose two deep learning (DL)-aided minimum mean square error (MMSE) estimation schemes. More specifically, our proposed framework consists of two steps, (i) a DL-aided channel fading state estimation and prediction step, followed by (ii) a linear MMSE estimation step to estimate the source signals for the learned channel fading states. Our proposed framework employs three DL models, namely the fully connected deep neural network (DNN), long short-term memory (LSTM) integrated DNN, and temporal convolution network (TCN). Extensive simulations show that these three DL models achieve similar accuracy in predicting the states of wireless fading channels. Our proposed data-driven approaches exhibit a reasonable performance gap in normalized mean square error (NMSE) compared to the genie-aided scheme, which considers perfect knowledge of instantaneous channel fading states.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信