{"title":"Aquilegia amurensis 面对叶绿体捕获时的偏向基因导入和适应。","authors":"Huaying Wang, Wei Zhang, Yanan Yu, Xiaoxue Fang, Tengjiao Zhang, Luyuan Xu, Lei Gong, Hongxing Xiao","doi":"10.1093/sysbio/syae039","DOIUrl":null,"url":null,"abstract":"<p><p>Chloroplast capture, a phenomenon that can occur through interspecific hybridization and introgression, is frequently invoked to explain cytonuclear discordance in plants. However, relatively few studies have documented the mechanisms of cytonuclear coevolution and its potential for driving species differentiation and possible functional differences in the context of chloroplast capture. To address this crucial question, we chose the Aquilegia genus, which is known for having minimal sterility among species, and inferred that A. amurensis captured the plastome of A. parviflora based on cytonuclear discordance and gene flow between the two species. We focused on the introgression region and its differentiation from corresponding regions in closely related species, especially its composition in a chloroplast capture scenario. We found that nuclear genes encoding cytonuclear enzyme complexes (CECs; i.e., organelle-targeted genes) of chloroplast donor species were selectively retained and displaced the original CEC genes in chloroplast-receiving species due to cytonuclear interactions during introgression. Notably, the intrinsic correlation of CEC introgression was a greater degree of evolutionary distance for these CECs between A. amurensis and A. parviflora. Terpene synthase activity genes (GO: 0010333) were overrepresented among the introgressed genes, and more than 30% of these genes were CEC genes. These findings support our observations that floral terpene release pattern is similar between A. amurensis and A. parviflora compared with A. japonica. Our study clarifies the mechanisms of cytonuclear coevolution, species differentiation and functional differences in the context of chloroplast capture and highlights the potential role of chloroplast capture in adaptation.</p>","PeriodicalId":22120,"journal":{"name":"Systematic Biology","volume":" ","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biased gene introgression and adaptation in the face of chloroplast capture in Aquilegia amurensis.\",\"authors\":\"Huaying Wang, Wei Zhang, Yanan Yu, Xiaoxue Fang, Tengjiao Zhang, Luyuan Xu, Lei Gong, Hongxing Xiao\",\"doi\":\"10.1093/sysbio/syae039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Chloroplast capture, a phenomenon that can occur through interspecific hybridization and introgression, is frequently invoked to explain cytonuclear discordance in plants. However, relatively few studies have documented the mechanisms of cytonuclear coevolution and its potential for driving species differentiation and possible functional differences in the context of chloroplast capture. To address this crucial question, we chose the Aquilegia genus, which is known for having minimal sterility among species, and inferred that A. amurensis captured the plastome of A. parviflora based on cytonuclear discordance and gene flow between the two species. We focused on the introgression region and its differentiation from corresponding regions in closely related species, especially its composition in a chloroplast capture scenario. We found that nuclear genes encoding cytonuclear enzyme complexes (CECs; i.e., organelle-targeted genes) of chloroplast donor species were selectively retained and displaced the original CEC genes in chloroplast-receiving species due to cytonuclear interactions during introgression. Notably, the intrinsic correlation of CEC introgression was a greater degree of evolutionary distance for these CECs between A. amurensis and A. parviflora. Terpene synthase activity genes (GO: 0010333) were overrepresented among the introgressed genes, and more than 30% of these genes were CEC genes. These findings support our observations that floral terpene release pattern is similar between A. amurensis and A. parviflora compared with A. japonica. Our study clarifies the mechanisms of cytonuclear coevolution, species differentiation and functional differences in the context of chloroplast capture and highlights the potential role of chloroplast capture in adaptation.</p>\",\"PeriodicalId\":22120,\"journal\":{\"name\":\"Systematic Biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systematic Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/sysbio/syae039\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systematic Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/sysbio/syae039","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
叶绿体捕获是一种可通过种间杂交和引种发生的现象,经常被用来解释植物细胞核的不一致性。然而,相对较少的研究记录了细胞核共同进化的机制及其在叶绿体捕获背景下驱动物种分化和可能的功能差异的潜力。为了解决这一关键问题,我们选择了以物种间极少不育而闻名的水仙属,并根据细胞核不一致性和两个物种间的基因流推断出 A. amurensis 捕获了 A. parviflora 的质体。我们重点研究了导入区及其与近缘物种相应区域的差异,尤其是叶绿体捕获情景下的构成。我们发现,叶绿体供体物种中编码细胞核酶复合物(CECs;即细胞器靶向基因)的核基因被选择性地保留下来,并在叶绿体接受物种中由于引种过程中的细胞核相互作用而取代了原有的 CEC 基因。值得注意的是,A. amurensis 和 A. parviflora 之间这些 CEC 基因的进化距离更远,这与 CEC 基因导入的内在相关性有关。萜烯合成酶活性基因(GO:0010333)在引种基因中的比例较高,其中 30% 以上是 CEC 基因。这些发现支持了我们的观察,即与 A. japonica 相比,A. amurensis 和 A. parviflora 的花萜烯释放模式相似。我们的研究阐明了叶绿体捕获背景下细胞核协同进化、物种分化和功能差异的机制,并强调了叶绿体捕获在适应过程中的潜在作用。
Biased gene introgression and adaptation in the face of chloroplast capture in Aquilegia amurensis.
Chloroplast capture, a phenomenon that can occur through interspecific hybridization and introgression, is frequently invoked to explain cytonuclear discordance in plants. However, relatively few studies have documented the mechanisms of cytonuclear coevolution and its potential for driving species differentiation and possible functional differences in the context of chloroplast capture. To address this crucial question, we chose the Aquilegia genus, which is known for having minimal sterility among species, and inferred that A. amurensis captured the plastome of A. parviflora based on cytonuclear discordance and gene flow between the two species. We focused on the introgression region and its differentiation from corresponding regions in closely related species, especially its composition in a chloroplast capture scenario. We found that nuclear genes encoding cytonuclear enzyme complexes (CECs; i.e., organelle-targeted genes) of chloroplast donor species were selectively retained and displaced the original CEC genes in chloroplast-receiving species due to cytonuclear interactions during introgression. Notably, the intrinsic correlation of CEC introgression was a greater degree of evolutionary distance for these CECs between A. amurensis and A. parviflora. Terpene synthase activity genes (GO: 0010333) were overrepresented among the introgressed genes, and more than 30% of these genes were CEC genes. These findings support our observations that floral terpene release pattern is similar between A. amurensis and A. parviflora compared with A. japonica. Our study clarifies the mechanisms of cytonuclear coevolution, species differentiation and functional differences in the context of chloroplast capture and highlights the potential role of chloroplast capture in adaptation.
期刊介绍:
Systematic Biology is the bimonthly journal of the Society of Systematic Biologists. Papers for the journal are original contributions to the theory, principles, and methods of systematics as well as phylogeny, evolution, morphology, biogeography, paleontology, genetics, and the classification of all living things. A Points of View section offers a forum for discussion, while book reviews and announcements of general interest are also featured.