伊利司命通过保护血液-脊髓屏障和促进轴突生长,改善脊髓损伤后的功能恢复。

IF 4.6 2区 医学 Q1 NEUROSCIENCES
{"title":"伊利司命通过保护血液-脊髓屏障和促进轴突生长,改善脊髓损伤后的功能恢复。","authors":"","doi":"10.1016/j.expneurol.2024.114886","DOIUrl":null,"url":null,"abstract":"<div><p>Spinal cord injury (SCI) induces the disruption of the blood–spinal cord barrier (BSCB) and the failure of axonal growth. SCI activates a complex series of responses, including cell apoptosis and endoplasmic reticulum (ER) stress. Pericytes play a critical role in maintaining BSCB integrity and facilitating tissue growth and repair. However, the roles of pericytes in SCI and the potential mechanisms underlying the improvements in functional recovery in SCI remain unclear. Recent evidence indicates that irisflorentin exerts neuroprotective effects against Parkinson's disease; however, whether it has potential protective roles in SCI or not is still unknown. In this study, we found that the administration of irisflorentin significantly inhibited pericyte apoptosis, protected BSCB integrity, promoted axonal growth, and ultimately improved locomotion recovery in a rat model of SCI. In vitro, we found that the positive effects of irisflorentin on axonal growth were likely to be mediated by regulating the crosstalk between pericytes and neurons. Furthermore, irisflorentin effectively ameliorated ER stress caused by incubation with thapsigargin (TG) in pericytes. Meanwhile, the protective effect of irisflorentin on BSCB disruption is strongly related to the reduction of pericyte apoptosis via inhibition of ER stress. Collectively, our findings demonstrate that irisflorentin is beneficial for functional recovery after SCI and that pericytes are a valid target of interest for future SCI therapies.</p></div>","PeriodicalId":12246,"journal":{"name":"Experimental Neurology","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Irisflorentin improves functional recovery after spinal cord injury by protecting the blood–spinal cord barrier and promoting axonal growth\",\"authors\":\"\",\"doi\":\"10.1016/j.expneurol.2024.114886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spinal cord injury (SCI) induces the disruption of the blood–spinal cord barrier (BSCB) and the failure of axonal growth. SCI activates a complex series of responses, including cell apoptosis and endoplasmic reticulum (ER) stress. Pericytes play a critical role in maintaining BSCB integrity and facilitating tissue growth and repair. However, the roles of pericytes in SCI and the potential mechanisms underlying the improvements in functional recovery in SCI remain unclear. Recent evidence indicates that irisflorentin exerts neuroprotective effects against Parkinson's disease; however, whether it has potential protective roles in SCI or not is still unknown. In this study, we found that the administration of irisflorentin significantly inhibited pericyte apoptosis, protected BSCB integrity, promoted axonal growth, and ultimately improved locomotion recovery in a rat model of SCI. In vitro, we found that the positive effects of irisflorentin on axonal growth were likely to be mediated by regulating the crosstalk between pericytes and neurons. Furthermore, irisflorentin effectively ameliorated ER stress caused by incubation with thapsigargin (TG) in pericytes. Meanwhile, the protective effect of irisflorentin on BSCB disruption is strongly related to the reduction of pericyte apoptosis via inhibition of ER stress. Collectively, our findings demonstrate that irisflorentin is beneficial for functional recovery after SCI and that pericytes are a valid target of interest for future SCI therapies.</p></div>\",\"PeriodicalId\":12246,\"journal\":{\"name\":\"Experimental Neurology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Neurology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0014488624002127\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0014488624002127","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

脊髓损伤(SCI)会导致血脊髓屏障(BSCB)破坏和轴突生长失败。脊髓损伤激活了一系列复杂的反应,包括细胞凋亡和内质网(ER)应激。周细胞在维持脐带屏障完整性、促进组织生长和修复方面发挥着关键作用。然而,周细胞在 SCI 中的作用以及 SCI 功能恢复改善的潜在机制仍不清楚。最近的证据表明,虹膜视蛋白对帕金森病有神经保护作用,但它是否对 SCI 有潜在的保护作用仍不清楚。在这项研究中,我们发现在大鼠 SCI 模型中施用虹膜视蛋白能显著抑制周细胞凋亡、保护 BSCB 的完整性、促进轴突生长并最终改善运动恢复。在体外,我们发现虹膜前列素对轴突生长的积极作用可能是通过调节周细胞和神经元之间的串扰来实现的。此外,鸢尾黄素还能有效地改善周细胞在硫代甘氨酸(TG)作用下产生的ER应激。同时,鸢尾黄素对BSCB破坏的保护作用与通过抑制ER应激减少周细胞凋亡密切相关。总之,我们的研究结果表明,虹膜脂环素有利于脊髓损伤后的功能恢复,而且周细胞是未来脊髓损伤疗法的一个有效靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Irisflorentin improves functional recovery after spinal cord injury by protecting the blood–spinal cord barrier and promoting axonal growth

Spinal cord injury (SCI) induces the disruption of the blood–spinal cord barrier (BSCB) and the failure of axonal growth. SCI activates a complex series of responses, including cell apoptosis and endoplasmic reticulum (ER) stress. Pericytes play a critical role in maintaining BSCB integrity and facilitating tissue growth and repair. However, the roles of pericytes in SCI and the potential mechanisms underlying the improvements in functional recovery in SCI remain unclear. Recent evidence indicates that irisflorentin exerts neuroprotective effects against Parkinson's disease; however, whether it has potential protective roles in SCI or not is still unknown. In this study, we found that the administration of irisflorentin significantly inhibited pericyte apoptosis, protected BSCB integrity, promoted axonal growth, and ultimately improved locomotion recovery in a rat model of SCI. In vitro, we found that the positive effects of irisflorentin on axonal growth were likely to be mediated by regulating the crosstalk between pericytes and neurons. Furthermore, irisflorentin effectively ameliorated ER stress caused by incubation with thapsigargin (TG) in pericytes. Meanwhile, the protective effect of irisflorentin on BSCB disruption is strongly related to the reduction of pericyte apoptosis via inhibition of ER stress. Collectively, our findings demonstrate that irisflorentin is beneficial for functional recovery after SCI and that pericytes are a valid target of interest for future SCI therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Experimental Neurology
Experimental Neurology 医学-神经科学
CiteScore
10.10
自引率
3.80%
发文量
258
审稿时长
42 days
期刊介绍: Experimental Neurology, a Journal of Neuroscience Research, publishes original research in neuroscience with a particular emphasis on novel findings in neural development, regeneration, plasticity and transplantation. The journal has focused on research concerning basic mechanisms underlying neurological disorders.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信