可在素域上表示的矩阵中不可避免的平面

IF 1 2区 数学 Q1 MATHEMATICS
Jim Geelen, Matthew E. Kroeker
{"title":"可在素域上表示的矩阵中不可避免的平面","authors":"Jim Geelen, Matthew E. Kroeker","doi":"10.1007/s00493-024-00112-4","DOIUrl":null,"url":null,"abstract":"<p>We show that, for any prime <i>p</i> and integer <span>\\(k \\ge 2\\)</span>, a simple <span>\\({{\\,\\textrm{GF}\\,}}(p)\\)</span>-representable matroid with sufficiently high rank has a rank-<i>k</i> flat which is either independent in <i>M</i>, or is a projective or affine geometry. As a corollary we obtain a Ramsey-type theorem for <span>\\({{\\,\\textrm{GF}\\,}}(p)\\)</span>-representable matroids. For any prime <i>p</i> and integer <span>\\(k\\ge 2\\)</span>, if we 2-colour the elements in any simple <span>\\({{\\,\\textrm{GF}\\,}}(p)\\)</span>-representable matroid with sufficiently high rank, then there is a monochromatic flat of rank <i>k</i>.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unavoidable Flats in Matroids Representable over Prime Fields\",\"authors\":\"Jim Geelen, Matthew E. Kroeker\",\"doi\":\"10.1007/s00493-024-00112-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that, for any prime <i>p</i> and integer <span>\\\\(k \\\\ge 2\\\\)</span>, a simple <span>\\\\({{\\\\,\\\\textrm{GF}\\\\,}}(p)\\\\)</span>-representable matroid with sufficiently high rank has a rank-<i>k</i> flat which is either independent in <i>M</i>, or is a projective or affine geometry. As a corollary we obtain a Ramsey-type theorem for <span>\\\\({{\\\\,\\\\textrm{GF}\\\\,}}(p)\\\\)</span>-representable matroids. For any prime <i>p</i> and integer <span>\\\\(k\\\\ge 2\\\\)</span>, if we 2-colour the elements in any simple <span>\\\\({{\\\\,\\\\textrm{GF}\\\\,}}(p)\\\\)</span>-representable matroid with sufficiently high rank, then there is a monochromatic flat of rank <i>k</i>.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00112-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00112-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,对于任意素数 p 和整数 (k \ge 2\ ),具有足够高秩的、简单的 \({{\,\textrm{GF}\,}}(p)\)-representable matroid 有一个秩-k平面,它要么在 M 中是独立的,要么是一个投影或仿射几何。作为推论,我们得到了一个拉姆齐型定理,适用于({{\,\textrm{GF}\,}}(p)\)可表示矩阵。对于任意素数 p 和整数 \(k\ge 2\),如果我们对任意简单的 \({{\textrm{GF}\,}}(p)\)--可表示 matroid 中的元素进行 2 色处理,并且秩足够高,那么就存在一个秩为 k 的单色平面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unavoidable Flats in Matroids Representable over Prime Fields

We show that, for any prime p and integer \(k \ge 2\), a simple \({{\,\textrm{GF}\,}}(p)\)-representable matroid with sufficiently high rank has a rank-k flat which is either independent in M, or is a projective or affine geometry. As a corollary we obtain a Ramsey-type theorem for \({{\,\textrm{GF}\,}}(p)\)-representable matroids. For any prime p and integer \(k\ge 2\), if we 2-colour the elements in any simple \({{\,\textrm{GF}\,}}(p)\)-representable matroid with sufficiently high rank, then there is a monochromatic flat of rank k.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信