{"title":"可在素域上表示的矩阵中不可避免的平面","authors":"Jim Geelen, Matthew E. Kroeker","doi":"10.1007/s00493-024-00112-4","DOIUrl":null,"url":null,"abstract":"<p>We show that, for any prime <i>p</i> and integer <span>\\(k \\ge 2\\)</span>, a simple <span>\\({{\\,\\textrm{GF}\\,}}(p)\\)</span>-representable matroid with sufficiently high rank has a rank-<i>k</i> flat which is either independent in <i>M</i>, or is a projective or affine geometry. As a corollary we obtain a Ramsey-type theorem for <span>\\({{\\,\\textrm{GF}\\,}}(p)\\)</span>-representable matroids. For any prime <i>p</i> and integer <span>\\(k\\ge 2\\)</span>, if we 2-colour the elements in any simple <span>\\({{\\,\\textrm{GF}\\,}}(p)\\)</span>-representable matroid with sufficiently high rank, then there is a monochromatic flat of rank <i>k</i>.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unavoidable Flats in Matroids Representable over Prime Fields\",\"authors\":\"Jim Geelen, Matthew E. Kroeker\",\"doi\":\"10.1007/s00493-024-00112-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that, for any prime <i>p</i> and integer <span>\\\\(k \\\\ge 2\\\\)</span>, a simple <span>\\\\({{\\\\,\\\\textrm{GF}\\\\,}}(p)\\\\)</span>-representable matroid with sufficiently high rank has a rank-<i>k</i> flat which is either independent in <i>M</i>, or is a projective or affine geometry. As a corollary we obtain a Ramsey-type theorem for <span>\\\\({{\\\\,\\\\textrm{GF}\\\\,}}(p)\\\\)</span>-representable matroids. For any prime <i>p</i> and integer <span>\\\\(k\\\\ge 2\\\\)</span>, if we 2-colour the elements in any simple <span>\\\\({{\\\\,\\\\textrm{GF}\\\\,}}(p)\\\\)</span>-representable matroid with sufficiently high rank, then there is a monochromatic flat of rank <i>k</i>.</p>\",\"PeriodicalId\":50666,\"journal\":{\"name\":\"Combinatorica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00493-024-00112-4\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00112-4","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们证明,对于任意素数 p 和整数 (k \ge 2\ ),具有足够高秩的、简单的 \({{\,\textrm{GF}\,}}(p)\)-representable matroid 有一个秩-k平面,它要么在 M 中是独立的,要么是一个投影或仿射几何。作为推论,我们得到了一个拉姆齐型定理,适用于({{\,\textrm{GF}\,}}(p)\)可表示矩阵。对于任意素数 p 和整数 \(k\ge 2\),如果我们对任意简单的 \({{\textrm{GF}\,}}(p)\)--可表示 matroid 中的元素进行 2 色处理,并且秩足够高,那么就存在一个秩为 k 的单色平面。
Unavoidable Flats in Matroids Representable over Prime Fields
We show that, for any prime p and integer \(k \ge 2\), a simple \({{\,\textrm{GF}\,}}(p)\)-representable matroid with sufficiently high rank has a rank-k flat which is either independent in M, or is a projective or affine geometry. As a corollary we obtain a Ramsey-type theorem for \({{\,\textrm{GF}\,}}(p)\)-representable matroids. For any prime p and integer \(k\ge 2\), if we 2-colour the elements in any simple \({{\,\textrm{GF}\,}}(p)\)-representable matroid with sufficiently high rank, then there is a monochromatic flat of rank k.
期刊介绍:
COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are
- Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups).
- Combinatorial optimization.
- Combinatorial aspects of geometry and number theory.
- Algorithms in combinatorics and related fields.
- Computational complexity theory.
- Randomization and explicit construction in combinatorics and algorithms.