整合穿戴式传感器数据,提升物联网音乐表演技能

IF 0.9 Q4 TELECOMMUNICATIONS
Xiaochan Li, Yi Shi, Daohua Pan
{"title":"整合穿戴式传感器数据,提升物联网音乐表演技能","authors":"Xiaochan Li,&nbsp;Yi Shi,&nbsp;Daohua Pan","doi":"10.1002/itl2.517","DOIUrl":null,"url":null,"abstract":"<p>This study integrates multi-node wearable sensor data to improve music performance skills. A window-adding method is used during time-frequency feature extraction. By incorporating kernel functions, we present a generalized discriminant analysis (GDA) method to reduce the high-dimensional sensor features while retaining performance traits. Experiments demonstrate that the proposed GDA approach achieves higher accuracy (92.71%), precision (90.54%), and recall (88.68%) compared to linear discriminant analysis (82.39% accuracy) and principal component analysis (88.56% accuracy) in classifying motions performed by music performers. The integrated analysis of wearable sensor data facilitates comprehensive feedback to strengthen proficiency across various music performance skills.</p>","PeriodicalId":100725,"journal":{"name":"Internet Technology Letters","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wearing sensor data integration for promoting the performance skills of music in IoT\",\"authors\":\"Xiaochan Li,&nbsp;Yi Shi,&nbsp;Daohua Pan\",\"doi\":\"10.1002/itl2.517\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study integrates multi-node wearable sensor data to improve music performance skills. A window-adding method is used during time-frequency feature extraction. By incorporating kernel functions, we present a generalized discriminant analysis (GDA) method to reduce the high-dimensional sensor features while retaining performance traits. Experiments demonstrate that the proposed GDA approach achieves higher accuracy (92.71%), precision (90.54%), and recall (88.68%) compared to linear discriminant analysis (82.39% accuracy) and principal component analysis (88.56% accuracy) in classifying motions performed by music performers. The integrated analysis of wearable sensor data facilitates comprehensive feedback to strengthen proficiency across various music performance skills.</p>\",\"PeriodicalId\":100725,\"journal\":{\"name\":\"Internet Technology Letters\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet Technology Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/itl2.517\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/itl2.517","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究整合了多节点可穿戴传感器数据,以提高音乐表演技能。在时频特征提取过程中使用了加窗方法。通过结合核函数,我们提出了一种广义判别分析(GDA)方法,以减少高维传感器特征,同时保留性能特征。实验证明,与线性判别分析(准确率为 82.39%)和主成分分析(准确率为 88.56%)相比,在对音乐表演者的动作进行分类时,所提出的 GDA 方法实现了更高的准确率(92.71%)、精确率(90.54%)和召回率(88.68%)。对可穿戴传感器数据的综合分析有助于提供全面的反馈,从而提高各种音乐表演技能的熟练程度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wearing sensor data integration for promoting the performance skills of music in IoT

This study integrates multi-node wearable sensor data to improve music performance skills. A window-adding method is used during time-frequency feature extraction. By incorporating kernel functions, we present a generalized discriminant analysis (GDA) method to reduce the high-dimensional sensor features while retaining performance traits. Experiments demonstrate that the proposed GDA approach achieves higher accuracy (92.71%), precision (90.54%), and recall (88.68%) compared to linear discriminant analysis (82.39% accuracy) and principal component analysis (88.56% accuracy) in classifying motions performed by music performers. The integrated analysis of wearable sensor data facilitates comprehensive feedback to strengthen proficiency across various music performance skills.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信