Ali Yazdani, Ahmadreza Okhovat, Raheleh Doosti, Hamid Soltanian-Zadeh
{"title":"合成磁共振成像对比剂的新草药来源","authors":"Ali Yazdani, Ahmadreza Okhovat, Raheleh Doosti, Hamid Soltanian-Zadeh","doi":"10.1002/ima.23136","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study explores the potential of halophytes, plants adapted to saline environments, as a novel source for developing herbal MRI contrast agents. Halophytes naturally accumulate various metals within their tissues. These metal ions, potentially complexed with organic molecules, are released into aqueous solutions prepared from the plants. We investigated the ability of these compounds to generate contrast enhancement in MRI using a sequential approach. First, aqueous extracts were prepared from seven selected halophytes, and their capacity to induce contrast in MR images was evaluated. Based on these initial findings, sample halophytes were chosen for further investigations. Second, chemical analysis revealed aluminum as the primary potent metal which enhances the contrast. Third, the halophyte extract was fractionated based on polarity, and the most polar fraction exhibited the strongest contrast-generating effect. Finally, the relaxivity of this fraction, a key parameter for MRI contrast agents, was measured. We propose that aluminum, likely complexed with a polar molecule within the plant extract, is responsible for the observed contrast enhancement in MRI.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 4","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New Herbal Source of Synthesizing Contrast Agents for Magnetic Resonance Imaging\",\"authors\":\"Ali Yazdani, Ahmadreza Okhovat, Raheleh Doosti, Hamid Soltanian-Zadeh\",\"doi\":\"10.1002/ima.23136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study explores the potential of halophytes, plants adapted to saline environments, as a novel source for developing herbal MRI contrast agents. Halophytes naturally accumulate various metals within their tissues. These metal ions, potentially complexed with organic molecules, are released into aqueous solutions prepared from the plants. We investigated the ability of these compounds to generate contrast enhancement in MRI using a sequential approach. First, aqueous extracts were prepared from seven selected halophytes, and their capacity to induce contrast in MR images was evaluated. Based on these initial findings, sample halophytes were chosen for further investigations. Second, chemical analysis revealed aluminum as the primary potent metal which enhances the contrast. Third, the halophyte extract was fractionated based on polarity, and the most polar fraction exhibited the strongest contrast-generating effect. Finally, the relaxivity of this fraction, a key parameter for MRI contrast agents, was measured. We propose that aluminum, likely complexed with a polar molecule within the plant extract, is responsible for the observed contrast enhancement in MRI.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"34 4\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.23136\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23136","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A New Herbal Source of Synthesizing Contrast Agents for Magnetic Resonance Imaging
This study explores the potential of halophytes, plants adapted to saline environments, as a novel source for developing herbal MRI contrast agents. Halophytes naturally accumulate various metals within their tissues. These metal ions, potentially complexed with organic molecules, are released into aqueous solutions prepared from the plants. We investigated the ability of these compounds to generate contrast enhancement in MRI using a sequential approach. First, aqueous extracts were prepared from seven selected halophytes, and their capacity to induce contrast in MR images was evaluated. Based on these initial findings, sample halophytes were chosen for further investigations. Second, chemical analysis revealed aluminum as the primary potent metal which enhances the contrast. Third, the halophyte extract was fractionated based on polarity, and the most polar fraction exhibited the strongest contrast-generating effect. Finally, the relaxivity of this fraction, a key parameter for MRI contrast agents, was measured. We propose that aluminum, likely complexed with a polar molecule within the plant extract, is responsible for the observed contrast enhancement in MRI.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.