{"title":"l-DOPA 受体 GPR143 通过 PC12 细胞中的 L 型钙通道抑制神经元生长","authors":"Miyu Inoue, Daiki Masukawa, Yoshio Goshima","doi":"10.1016/j.jphs.2024.07.003","DOIUrl":null,"url":null,"abstract":"<div><p>The gene product of ocular albinism 1 (OA1)/G-protein-coupled receptor (GPR)143 is a receptor for L-3,4-dihydroxyphenylanine (<span>l</span>-DOPA), the most effective agent for Parkinson's disease. When overexpressed, human wild-type GPR143, but not its mutants, inhibits neurite outgrowth in PC12 cells. We investigated the downstream signaling pathway for GPR143-induced inhibition of neurite outgrowth. Nifedipine restored GPR143-induced neurite outgrowth inhibition to the level of control transfectant but did not affect outgrowth in GPR143-knockdown cells. Cilnidipine and flunarizine also suppressed the GPR143-induced inhibition, but their effects at higher concentrations still occurred even in GPR143-knockdown cells. These results suggest that GPR143 regulates neurite outgrowth via L-type calcium channel(s).</p></div>","PeriodicalId":16786,"journal":{"name":"Journal of pharmacological sciences","volume":"156 1","pages":"Pages 45-48"},"PeriodicalIF":3.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1347861324000483/pdfft?md5=26879980d3366ae1e4d1359eb7017b76&pid=1-s2.0-S1347861324000483-main.pdf","citationCount":"0","resultStr":"{\"title\":\"l-DOPA receptor GPR143 inhibits neurite outgrowth via L-type calcium channels in PC12 cells\",\"authors\":\"Miyu Inoue, Daiki Masukawa, Yoshio Goshima\",\"doi\":\"10.1016/j.jphs.2024.07.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The gene product of ocular albinism 1 (OA1)/G-protein-coupled receptor (GPR)143 is a receptor for L-3,4-dihydroxyphenylanine (<span>l</span>-DOPA), the most effective agent for Parkinson's disease. When overexpressed, human wild-type GPR143, but not its mutants, inhibits neurite outgrowth in PC12 cells. We investigated the downstream signaling pathway for GPR143-induced inhibition of neurite outgrowth. Nifedipine restored GPR143-induced neurite outgrowth inhibition to the level of control transfectant but did not affect outgrowth in GPR143-knockdown cells. Cilnidipine and flunarizine also suppressed the GPR143-induced inhibition, but their effects at higher concentrations still occurred even in GPR143-knockdown cells. These results suggest that GPR143 regulates neurite outgrowth via L-type calcium channel(s).</p></div>\",\"PeriodicalId\":16786,\"journal\":{\"name\":\"Journal of pharmacological sciences\",\"volume\":\"156 1\",\"pages\":\"Pages 45-48\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1347861324000483/pdfft?md5=26879980d3366ae1e4d1359eb7017b76&pid=1-s2.0-S1347861324000483-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of pharmacological sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1347861324000483\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of pharmacological sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1347861324000483","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
l-DOPA receptor GPR143 inhibits neurite outgrowth via L-type calcium channels in PC12 cells
The gene product of ocular albinism 1 (OA1)/G-protein-coupled receptor (GPR)143 is a receptor for L-3,4-dihydroxyphenylanine (l-DOPA), the most effective agent for Parkinson's disease. When overexpressed, human wild-type GPR143, but not its mutants, inhibits neurite outgrowth in PC12 cells. We investigated the downstream signaling pathway for GPR143-induced inhibition of neurite outgrowth. Nifedipine restored GPR143-induced neurite outgrowth inhibition to the level of control transfectant but did not affect outgrowth in GPR143-knockdown cells. Cilnidipine and flunarizine also suppressed the GPR143-induced inhibition, but their effects at higher concentrations still occurred even in GPR143-knockdown cells. These results suggest that GPR143 regulates neurite outgrowth via L-type calcium channel(s).
期刊介绍:
Journal of Pharmacological Sciences (JPS) is an international open access journal intended for the advancement of pharmacological sciences in the world. The Journal welcomes submissions in all fields of experimental and clinical pharmacology, including neuroscience, and biochemical, cellular, and molecular pharmacology for publication as Reviews, Full Papers or Short Communications. Short Communications are short research article intended to provide novel and exciting pharmacological findings. Manuscripts concerning descriptive case reports, pharmacokinetic and pharmacodynamic studies without pharmacological mechanism and dose-response determinations are not acceptable and will be rejected without peer review. The ethnopharmacological studies are also out of the scope of this journal. Furthermore, JPS does not publish work on the actions of biological extracts unknown chemical composition.