Tanmoy Bhowmik , Naveen Eluru , Samiul Hasan , Aron Culotta , Kamol Chandra Roy
{"title":"综合旅行调查和社交媒体数据预测飓风疏散行为","authors":"Tanmoy Bhowmik , Naveen Eluru , Samiul Hasan , Aron Culotta , Kamol Chandra Roy","doi":"10.1016/j.trc.2024.104753","DOIUrl":null,"url":null,"abstract":"<div><p>Evacuation behavior models estimated using post-disaster surveys are not adequate to predict real-time dynamic population response as a hurricane unfolds. With the emergence of ubiquitous technology and devices in recent times, social media data with its higher spatio-temporal coverage has become a potential alternative for understanding evacuation behaviour during hurricanes. However, these data are often associated with selection bias and population representativeness issues. To that extent, the current study proposes a novel data fusion algorithm to combine heterogeneous data sources from transportation systems and social media, in a unified framework to understand and predict real-time population response during hurricanes. Specifically, Twitter data of 2300 users are collected for evacuation response during Hurricane Irma and augmented behaviourally (probabilistically) with a representative National Household Travel Survey (NHTS) data, thus creating a hybrid dataset to improve the representativeness as well as provide a rich set of explanatory variables for understanding the evacuation behavior. The fusion process is conducted using a probabilistic matching method based on a set of common attributes across NHTS and Twitter. The fused dataset is employed to estimate the evacuation model and a comparison exercise is conducted to evaluate the performance of the model via fusion. The model fitness measures clearly demonstrate the improvement in data fit for the evacuation model through the proposed fusion algorithm. Further, we conduct a prediction assessment to illustrate the applicability of the proposed fusion technique and the results clearly highlight the improvement in the evacuation prediction rate achieved through the fused models. The proposed data-driven methods will enhance our ability to predict time-dependent evacuation demand for better hurricane response operations such as targeted warning dissemination and improved evacuation traffic management, allowing emergency plans to be more adaptive.</p></div>","PeriodicalId":54417,"journal":{"name":"Transportation Research Part C-Emerging Technologies","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predicting hurricane evacuation behavior synthesizing data from travel surveys and social media\",\"authors\":\"Tanmoy Bhowmik , Naveen Eluru , Samiul Hasan , Aron Culotta , Kamol Chandra Roy\",\"doi\":\"10.1016/j.trc.2024.104753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Evacuation behavior models estimated using post-disaster surveys are not adequate to predict real-time dynamic population response as a hurricane unfolds. With the emergence of ubiquitous technology and devices in recent times, social media data with its higher spatio-temporal coverage has become a potential alternative for understanding evacuation behaviour during hurricanes. However, these data are often associated with selection bias and population representativeness issues. To that extent, the current study proposes a novel data fusion algorithm to combine heterogeneous data sources from transportation systems and social media, in a unified framework to understand and predict real-time population response during hurricanes. Specifically, Twitter data of 2300 users are collected for evacuation response during Hurricane Irma and augmented behaviourally (probabilistically) with a representative National Household Travel Survey (NHTS) data, thus creating a hybrid dataset to improve the representativeness as well as provide a rich set of explanatory variables for understanding the evacuation behavior. The fusion process is conducted using a probabilistic matching method based on a set of common attributes across NHTS and Twitter. The fused dataset is employed to estimate the evacuation model and a comparison exercise is conducted to evaluate the performance of the model via fusion. The model fitness measures clearly demonstrate the improvement in data fit for the evacuation model through the proposed fusion algorithm. Further, we conduct a prediction assessment to illustrate the applicability of the proposed fusion technique and the results clearly highlight the improvement in the evacuation prediction rate achieved through the fused models. The proposed data-driven methods will enhance our ability to predict time-dependent evacuation demand for better hurricane response operations such as targeted warning dissemination and improved evacuation traffic management, allowing emergency plans to be more adaptive.</p></div>\",\"PeriodicalId\":54417,\"journal\":{\"name\":\"Transportation Research Part C-Emerging Technologies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Part C-Emerging Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0968090X24002742\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TRANSPORTATION SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part C-Emerging Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968090X24002742","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TRANSPORTATION SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Predicting hurricane evacuation behavior synthesizing data from travel surveys and social media
Evacuation behavior models estimated using post-disaster surveys are not adequate to predict real-time dynamic population response as a hurricane unfolds. With the emergence of ubiquitous technology and devices in recent times, social media data with its higher spatio-temporal coverage has become a potential alternative for understanding evacuation behaviour during hurricanes. However, these data are often associated with selection bias and population representativeness issues. To that extent, the current study proposes a novel data fusion algorithm to combine heterogeneous data sources from transportation systems and social media, in a unified framework to understand and predict real-time population response during hurricanes. Specifically, Twitter data of 2300 users are collected for evacuation response during Hurricane Irma and augmented behaviourally (probabilistically) with a representative National Household Travel Survey (NHTS) data, thus creating a hybrid dataset to improve the representativeness as well as provide a rich set of explanatory variables for understanding the evacuation behavior. The fusion process is conducted using a probabilistic matching method based on a set of common attributes across NHTS and Twitter. The fused dataset is employed to estimate the evacuation model and a comparison exercise is conducted to evaluate the performance of the model via fusion. The model fitness measures clearly demonstrate the improvement in data fit for the evacuation model through the proposed fusion algorithm. Further, we conduct a prediction assessment to illustrate the applicability of the proposed fusion technique and the results clearly highlight the improvement in the evacuation prediction rate achieved through the fused models. The proposed data-driven methods will enhance our ability to predict time-dependent evacuation demand for better hurricane response operations such as targeted warning dissemination and improved evacuation traffic management, allowing emergency plans to be more adaptive.
期刊介绍:
Transportation Research: Part C (TR_C) is dedicated to showcasing high-quality, scholarly research that delves into the development, applications, and implications of transportation systems and emerging technologies. Our focus lies not solely on individual technologies, but rather on their broader implications for the planning, design, operation, control, maintenance, and rehabilitation of transportation systems, services, and components. In essence, the intellectual core of the journal revolves around the transportation aspect rather than the technology itself. We actively encourage the integration of quantitative methods from diverse fields such as operations research, control systems, complex networks, computer science, and artificial intelligence. Join us in exploring the intersection of transportation systems and emerging technologies to drive innovation and progress in the field.