模拟事件管理团队的响应和绩效

Daniel L. Jarvis , Gregory S. Macfarlane , Brynn Woolley , Grant G. Schultz
{"title":"模拟事件管理团队的响应和绩效","authors":"Daniel L. Jarvis ,&nbsp;Gregory S. Macfarlane ,&nbsp;Brynn Woolley ,&nbsp;Grant G. Schultz","doi":"10.1016/j.procs.2024.06.002","DOIUrl":null,"url":null,"abstract":"<div><p>Recent research has shown the power of large-scale regional traffic simulations—such as MATSim—to model the systemic impacts and costs of capacity-reducing incidents. At the same time, observational studies have illustrated the potential for traffic Incident Management Teams (IMTs) to reduce these impacts and costs on a local scale; mathematical optimization models have also attempted to scale or locate these programs. In this research, we connect these two separate lines of scholarly inquiry by simulating the dynamic response of an IMT fleet to incidents arising on a metropolitan highway network. We introduce a MATSim module that handles stochastically-generated incidents of varying severity, dispatches IMT to clear the incidents based on path distance and availability, and measures excess user costs based on the incidents. We apply this module in a scenario with data from the Salt Lake City, Utah metropolitan region. We demonstrate the potential use of the module through an illustrative experiment increasing the IMT fleet size with a collection of simulated incident days.</p></div>","PeriodicalId":20465,"journal":{"name":"Procedia Computer Science","volume":"238 ","pages":"Pages 91-96"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1877050924012389/pdf?md5=16c83b7b3a8f07afa1c67fdf119e2b8d&pid=1-s2.0-S1877050924012389-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Simulating Incident Management Team Response and Performance\",\"authors\":\"Daniel L. Jarvis ,&nbsp;Gregory S. Macfarlane ,&nbsp;Brynn Woolley ,&nbsp;Grant G. Schultz\",\"doi\":\"10.1016/j.procs.2024.06.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Recent research has shown the power of large-scale regional traffic simulations—such as MATSim—to model the systemic impacts and costs of capacity-reducing incidents. At the same time, observational studies have illustrated the potential for traffic Incident Management Teams (IMTs) to reduce these impacts and costs on a local scale; mathematical optimization models have also attempted to scale or locate these programs. In this research, we connect these two separate lines of scholarly inquiry by simulating the dynamic response of an IMT fleet to incidents arising on a metropolitan highway network. We introduce a MATSim module that handles stochastically-generated incidents of varying severity, dispatches IMT to clear the incidents based on path distance and availability, and measures excess user costs based on the incidents. We apply this module in a scenario with data from the Salt Lake City, Utah metropolitan region. We demonstrate the potential use of the module through an illustrative experiment increasing the IMT fleet size with a collection of simulated incident days.</p></div>\",\"PeriodicalId\":20465,\"journal\":{\"name\":\"Procedia Computer Science\",\"volume\":\"238 \",\"pages\":\"Pages 91-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1877050924012389/pdf?md5=16c83b7b3a8f07afa1c67fdf119e2b8d&pid=1-s2.0-S1877050924012389-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Procedia Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1877050924012389\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Procedia Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1877050924012389","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近的研究表明,大规模区域交通模拟(如 MATSim)可以模拟降低容量事故的系统影响和成本。与此同时,观察性研究也说明了交通事故管理小组(IMT)在局部范围内降低这些影响和成本的潜力;数学优化模型也试图对这些计划进行扩展或定位。在本研究中,我们通过模拟 IMT 车队对大都市高速公路网中发生的事故的动态响应,将这两个不同的学术研究方向联系起来。我们引入了一个 MATSim 模块,该模块可处理随机生成的不同严重程度的事故,根据路径距离和可用性调度 IMT 以清除事故,并根据事故测算超额用户成本。我们利用犹他州盐湖城大都会地区的数据将该模块应用于一个场景中。我们通过一系列模拟事故日增加 IMT 车队规模的说明性实验,展示了该模块的潜在用途。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simulating Incident Management Team Response and Performance

Recent research has shown the power of large-scale regional traffic simulations—such as MATSim—to model the systemic impacts and costs of capacity-reducing incidents. At the same time, observational studies have illustrated the potential for traffic Incident Management Teams (IMTs) to reduce these impacts and costs on a local scale; mathematical optimization models have also attempted to scale or locate these programs. In this research, we connect these two separate lines of scholarly inquiry by simulating the dynamic response of an IMT fleet to incidents arising on a metropolitan highway network. We introduce a MATSim module that handles stochastically-generated incidents of varying severity, dispatches IMT to clear the incidents based on path distance and availability, and measures excess user costs based on the incidents. We apply this module in a scenario with data from the Salt Lake City, Utah metropolitan region. We demonstrate the potential use of the module through an illustrative experiment increasing the IMT fleet size with a collection of simulated incident days.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信