关于高维预测回归的 LASSO

IF 9.9 3区 经济学 Q1 ECONOMICS
Ziwei Mei, Zhentao Shi
{"title":"关于高维预测回归的 LASSO","authors":"Ziwei Mei,&nbsp;Zhentao Shi","doi":"10.1016/j.jeconom.2024.105809","DOIUrl":null,"url":null,"abstract":"<div><p>This paper examines LASSO, a widely-used <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-penalized regression method, in high dimensional linear predictive regressions, particularly when the number of potential predictors exceeds the sample size and numerous unit root regressors are present. The consistency of LASSO is contingent upon two key components: the deviation bound of the cross product of the regressors and the error term, and the restricted eigenvalue of the Gram matrix. We present new probabilistic bounds for these components, suggesting that LASSO’s rates of convergence are different from those typically observed in cross-sectional cases. When applied to a mixture of stationary, nonstationary, and cointegrated predictors, LASSO maintains its asymptotic guarantee if predictors are scale-standardized. Leveraging machine learning and macroeconomic domain expertise, LASSO demonstrates strong performance in forecasting the unemployment rate, as evidenced by its application to the FRED-MD database.</p></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"242 2","pages":"Article 105809"},"PeriodicalIF":9.9000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On LASSO for high dimensional predictive regression\",\"authors\":\"Ziwei Mei,&nbsp;Zhentao Shi\",\"doi\":\"10.1016/j.jeconom.2024.105809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper examines LASSO, a widely-used <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-penalized regression method, in high dimensional linear predictive regressions, particularly when the number of potential predictors exceeds the sample size and numerous unit root regressors are present. The consistency of LASSO is contingent upon two key components: the deviation bound of the cross product of the regressors and the error term, and the restricted eigenvalue of the Gram matrix. We present new probabilistic bounds for these components, suggesting that LASSO’s rates of convergence are different from those typically observed in cross-sectional cases. When applied to a mixture of stationary, nonstationary, and cointegrated predictors, LASSO maintains its asymptotic guarantee if predictors are scale-standardized. Leveraging machine learning and macroeconomic domain expertise, LASSO demonstrates strong performance in forecasting the unemployment rate, as evidenced by its application to the FRED-MD database.</p></div>\",\"PeriodicalId\":15629,\"journal\":{\"name\":\"Journal of Econometrics\",\"volume\":\"242 2\",\"pages\":\"Article 105809\"},\"PeriodicalIF\":9.9000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometrics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0304407624001556\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407624001556","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在高维线性预测回归中广泛使用的 L1 惩罚回归方法 LASSO,尤其是当潜在预测因子的数量超过样本量且存在大量单位根回归因子时。LASSO 的一致性取决于两个关键要素:回归项和误差项的交叉积的偏差边界,以及格拉姆矩阵的限制特征值。我们为这些部分提出了新的概率边界,表明 LASSO 的收敛速率不同于通常在横截面情况下观察到的收敛速率。当应用于静态、非静态和协整预测因子的混合物时,如果对预测因子进行规模标准化,LASSO 将保持其渐近保证。利用机器学习和宏观经济领域的专业知识,LASSO 在预测失业率方面表现出色,其在 FRED-MD 数据库中的应用就证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On LASSO for high dimensional predictive regression

This paper examines LASSO, a widely-used L1-penalized regression method, in high dimensional linear predictive regressions, particularly when the number of potential predictors exceeds the sample size and numerous unit root regressors are present. The consistency of LASSO is contingent upon two key components: the deviation bound of the cross product of the regressors and the error term, and the restricted eigenvalue of the Gram matrix. We present new probabilistic bounds for these components, suggesting that LASSO’s rates of convergence are different from those typically observed in cross-sectional cases. When applied to a mixture of stationary, nonstationary, and cointegrated predictors, LASSO maintains its asymptotic guarantee if predictors are scale-standardized. Leveraging machine learning and macroeconomic domain expertise, LASSO demonstrates strong performance in forecasting the unemployment rate, as evidenced by its application to the FRED-MD database.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometrics
Journal of Econometrics 社会科学-数学跨学科应用
CiteScore
8.60
自引率
1.60%
发文量
220
审稿时长
3-8 weeks
期刊介绍: The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信