Yijun Ren , Ying Gong , Yue Yu , Xinghao Chen , Langqin Yu , Lei Zhao
{"title":"拓扑特征与经验食物网中 IGP 模块的普遍性有关","authors":"Yijun Ren , Ying Gong , Yue Yu , Xinghao Chen , Langqin Yu , Lei Zhao","doi":"10.1016/j.ecocom.2024.101091","DOIUrl":null,"url":null,"abstract":"<div><p>Exploring how food webs are assembled from basic modules is charming and crucial for understanding how communities are self-organized. As one of the basic modules, intraguild predation (IGP) consists of a prey being consumed by both an intermediate and a top predator, with the former also being consumed by the latter (thus encompassing both predation and competition). This interaction has been shown to govern food web stability, and therefore underpin the organization of network structures. While some studies have been made in understanding the factors and mechanisms behind the prevalence of IGP modules in food webs, the specific role of food web topological structures in relation to these modules remains largely unexplored and is not well understood. Here, 103 food webs were analyzed, and we found that the number of modules in each food web was largely determined by taxon richness and connectance. After controlling richness and connectance, the specific scale-free pattern and core-periphery structure of empirical food webs explains the higher prevalence of IGP modules in empirical food webs better than by chance. Lastly, the loss of taxa which supported large number of IGP modules would lead to serious damage to food web robustness, indicating the keystone role of these taxa in maintaining food web structure and stability. Our results provide new insight into the assembly of empirical food webs from the perspective of IGP modules.</p></div>","PeriodicalId":50559,"journal":{"name":"Ecological Complexity","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Topological traits are associated with the prevalence of IGP modules in empirical food webs\",\"authors\":\"Yijun Ren , Ying Gong , Yue Yu , Xinghao Chen , Langqin Yu , Lei Zhao\",\"doi\":\"10.1016/j.ecocom.2024.101091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Exploring how food webs are assembled from basic modules is charming and crucial for understanding how communities are self-organized. As one of the basic modules, intraguild predation (IGP) consists of a prey being consumed by both an intermediate and a top predator, with the former also being consumed by the latter (thus encompassing both predation and competition). This interaction has been shown to govern food web stability, and therefore underpin the organization of network structures. While some studies have been made in understanding the factors and mechanisms behind the prevalence of IGP modules in food webs, the specific role of food web topological structures in relation to these modules remains largely unexplored and is not well understood. Here, 103 food webs were analyzed, and we found that the number of modules in each food web was largely determined by taxon richness and connectance. After controlling richness and connectance, the specific scale-free pattern and core-periphery structure of empirical food webs explains the higher prevalence of IGP modules in empirical food webs better than by chance. Lastly, the loss of taxa which supported large number of IGP modules would lead to serious damage to food web robustness, indicating the keystone role of these taxa in maintaining food web structure and stability. Our results provide new insight into the assembly of empirical food webs from the perspective of IGP modules.</p></div>\",\"PeriodicalId\":50559,\"journal\":{\"name\":\"Ecological Complexity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecological Complexity\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476945X24000199\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Complexity","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476945X24000199","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
Topological traits are associated with the prevalence of IGP modules in empirical food webs
Exploring how food webs are assembled from basic modules is charming and crucial for understanding how communities are self-organized. As one of the basic modules, intraguild predation (IGP) consists of a prey being consumed by both an intermediate and a top predator, with the former also being consumed by the latter (thus encompassing both predation and competition). This interaction has been shown to govern food web stability, and therefore underpin the organization of network structures. While some studies have been made in understanding the factors and mechanisms behind the prevalence of IGP modules in food webs, the specific role of food web topological structures in relation to these modules remains largely unexplored and is not well understood. Here, 103 food webs were analyzed, and we found that the number of modules in each food web was largely determined by taxon richness and connectance. After controlling richness and connectance, the specific scale-free pattern and core-periphery structure of empirical food webs explains the higher prevalence of IGP modules in empirical food webs better than by chance. Lastly, the loss of taxa which supported large number of IGP modules would lead to serious damage to food web robustness, indicating the keystone role of these taxa in maintaining food web structure and stability. Our results provide new insight into the assembly of empirical food webs from the perspective of IGP modules.
期刊介绍:
Ecological Complexity is an international journal devoted to the publication of high quality, peer-reviewed articles on all aspects of biocomplexity in the environment, theoretical ecology, and special issues on topics of current interest. The scope of the journal is wide and interdisciplinary with an integrated and quantitative approach. The journal particularly encourages submission of papers that integrate natural and social processes at appropriately broad spatio-temporal scales.
Ecological Complexity will publish research into the following areas:
• All aspects of biocomplexity in the environment and theoretical ecology
• Ecosystems and biospheres as complex adaptive systems
• Self-organization of spatially extended ecosystems
• Emergent properties and structures of complex ecosystems
• Ecological pattern formation in space and time
• The role of biophysical constraints and evolutionary attractors on species assemblages
• Ecological scaling (scale invariance, scale covariance and across scale dynamics), allometry, and hierarchy theory
• Ecological topology and networks
• Studies towards an ecology of complex systems
• Complex systems approaches for the study of dynamic human-environment interactions
• Using knowledge of nonlinear phenomena to better guide policy development for adaptation strategies and mitigation to environmental change
• New tools and methods for studying ecological complexity