PLM-Res-U-Net:用于增强多纹理棕榈叶手稿图像的轻量级二值化模型

Q1 Social Sciences
N. Shobha Rani , T.M. Akhilesh , B.J. Bipin Nair , K.S. Koushik , Elisa Barney Smith
{"title":"PLM-Res-U-Net:用于增强多纹理棕榈叶手稿图像的轻量级二值化模型","authors":"N. Shobha Rani ,&nbsp;T.M. Akhilesh ,&nbsp;B.J. Bipin Nair ,&nbsp;K.S. Koushik ,&nbsp;Elisa Barney Smith","doi":"10.1016/j.daach.2024.e00360","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a deep semantic binarization model, PLM-Res-U-Net, for enhancing palm-leaf manuscripts. PLM-Res-U-Net is a lightweight model comprising encoding and decoding blocks with skip connections. The model enhances the palm leaf manuscript by efficiently retaining the text strokes by removing the degradations such as uneven illumination, aging marks, brittleness, and background discolorations. Two datasets of palm leaf manuscript collections with multiple degradation patterns and diverse textured backgrounds are used for experimentation. PLM-Res-U-Net is trained from scratch with 50 epochs with a learning rate <span><math><mrow><mi>o</mi><mi>f</mi><mspace></mspace><mn>1</mn><msup><mi>e</mi><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow></math></span> with three sampling strategies. The performance of state-of-the-art deep learning models ResUnet, Pspnet, U-Net++, and Segnet are also evaluated along with two diverse benchmark datasets. Analysis shows that results obtained by the proposed PLM-Res-U-Net prove generalizability and computational efficacy with a dice score of 0.986. Additionally, PLM-Res-U-Net successfully preserves the edge strokes of the text compared with state-of-the-art models.</p></div>","PeriodicalId":38225,"journal":{"name":"Digital Applications in Archaeology and Cultural Heritage","volume":"34 ","pages":"Article e00360"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PLM-Res-U-Net: A light weight binarization model for enhancement of multi-textured palm leaf manuscript images\",\"authors\":\"N. Shobha Rani ,&nbsp;T.M. Akhilesh ,&nbsp;B.J. Bipin Nair ,&nbsp;K.S. Koushik ,&nbsp;Elisa Barney Smith\",\"doi\":\"10.1016/j.daach.2024.e00360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a deep semantic binarization model, PLM-Res-U-Net, for enhancing palm-leaf manuscripts. PLM-Res-U-Net is a lightweight model comprising encoding and decoding blocks with skip connections. The model enhances the palm leaf manuscript by efficiently retaining the text strokes by removing the degradations such as uneven illumination, aging marks, brittleness, and background discolorations. Two datasets of palm leaf manuscript collections with multiple degradation patterns and diverse textured backgrounds are used for experimentation. PLM-Res-U-Net is trained from scratch with 50 epochs with a learning rate <span><math><mrow><mi>o</mi><mi>f</mi><mspace></mspace><mn>1</mn><msup><mi>e</mi><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow></math></span> with three sampling strategies. The performance of state-of-the-art deep learning models ResUnet, Pspnet, U-Net++, and Segnet are also evaluated along with two diverse benchmark datasets. Analysis shows that results obtained by the proposed PLM-Res-U-Net prove generalizability and computational efficacy with a dice score of 0.986. Additionally, PLM-Res-U-Net successfully preserves the edge strokes of the text compared with state-of-the-art models.</p></div>\",\"PeriodicalId\":38225,\"journal\":{\"name\":\"Digital Applications in Archaeology and Cultural Heritage\",\"volume\":\"34 \",\"pages\":\"Article e00360\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Applications in Archaeology and Cultural Heritage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212054824000456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Applications in Archaeology and Cultural Heritage","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212054824000456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用于增强掌叶手稿的深度语义二值化模型 PLM-Res-U-Net。PLM-Res-U-Net 是一个轻量级模型,由带有跳转连接的编码和解码块组成。该模型通过去除诸如光照不均、老化痕迹、脆性和背景变色等退化现象,有效地保留了文本笔画,从而增强了棕榈叶手稿。实验使用了两个具有多种退化模式和不同纹理背景的棕榈叶手稿数据集。PLM-Res-U-Net 采用三种采样策略,以 1e-8 的学习率从头开始训练 50 个历元。此外,还对最先进的深度学习模型 ResUnet、Pspnet、U-Net++ 和 Segnet 的性能以及两个不同的基准数据集进行了评估。分析表明,建议的 PLM-Res-U-Net 所获得的结果证明了其通用性和计算效率,骰子得分为 0.986。此外,与最先进的模型相比,PLM-Res-U-Net 成功地保留了文本的边缘笔画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PLM-Res-U-Net: A light weight binarization model for enhancement of multi-textured palm leaf manuscript images

This paper proposes a deep semantic binarization model, PLM-Res-U-Net, for enhancing palm-leaf manuscripts. PLM-Res-U-Net is a lightweight model comprising encoding and decoding blocks with skip connections. The model enhances the palm leaf manuscript by efficiently retaining the text strokes by removing the degradations such as uneven illumination, aging marks, brittleness, and background discolorations. Two datasets of palm leaf manuscript collections with multiple degradation patterns and diverse textured backgrounds are used for experimentation. PLM-Res-U-Net is trained from scratch with 50 epochs with a learning rate of1e8 with three sampling strategies. The performance of state-of-the-art deep learning models ResUnet, Pspnet, U-Net++, and Segnet are also evaluated along with two diverse benchmark datasets. Analysis shows that results obtained by the proposed PLM-Res-U-Net prove generalizability and computational efficacy with a dice score of 0.986. Additionally, PLM-Res-U-Net successfully preserves the edge strokes of the text compared with state-of-the-art models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
0.00%
发文量
33
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信