N. Shobha Rani , T.M. Akhilesh , B.J. Bipin Nair , K.S. Koushik , Elisa Barney Smith
{"title":"PLM-Res-U-Net:用于增强多纹理棕榈叶手稿图像的轻量级二值化模型","authors":"N. Shobha Rani , T.M. Akhilesh , B.J. Bipin Nair , K.S. Koushik , Elisa Barney Smith","doi":"10.1016/j.daach.2024.e00360","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a deep semantic binarization model, PLM-Res-U-Net, for enhancing palm-leaf manuscripts. PLM-Res-U-Net is a lightweight model comprising encoding and decoding blocks with skip connections. The model enhances the palm leaf manuscript by efficiently retaining the text strokes by removing the degradations such as uneven illumination, aging marks, brittleness, and background discolorations. Two datasets of palm leaf manuscript collections with multiple degradation patterns and diverse textured backgrounds are used for experimentation. PLM-Res-U-Net is trained from scratch with 50 epochs with a learning rate <span><math><mrow><mi>o</mi><mi>f</mi><mspace></mspace><mn>1</mn><msup><mi>e</mi><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow></math></span> with three sampling strategies. The performance of state-of-the-art deep learning models ResUnet, Pspnet, U-Net++, and Segnet are also evaluated along with two diverse benchmark datasets. Analysis shows that results obtained by the proposed PLM-Res-U-Net prove generalizability and computational efficacy with a dice score of 0.986. Additionally, PLM-Res-U-Net successfully preserves the edge strokes of the text compared with state-of-the-art models.</p></div>","PeriodicalId":38225,"journal":{"name":"Digital Applications in Archaeology and Cultural Heritage","volume":"34 ","pages":"Article e00360"},"PeriodicalIF":0.0000,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PLM-Res-U-Net: A light weight binarization model for enhancement of multi-textured palm leaf manuscript images\",\"authors\":\"N. Shobha Rani , T.M. Akhilesh , B.J. Bipin Nair , K.S. Koushik , Elisa Barney Smith\",\"doi\":\"10.1016/j.daach.2024.e00360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a deep semantic binarization model, PLM-Res-U-Net, for enhancing palm-leaf manuscripts. PLM-Res-U-Net is a lightweight model comprising encoding and decoding blocks with skip connections. The model enhances the palm leaf manuscript by efficiently retaining the text strokes by removing the degradations such as uneven illumination, aging marks, brittleness, and background discolorations. Two datasets of palm leaf manuscript collections with multiple degradation patterns and diverse textured backgrounds are used for experimentation. PLM-Res-U-Net is trained from scratch with 50 epochs with a learning rate <span><math><mrow><mi>o</mi><mi>f</mi><mspace></mspace><mn>1</mn><msup><mi>e</mi><mrow><mo>−</mo><mn>8</mn></mrow></msup></mrow></math></span> with three sampling strategies. The performance of state-of-the-art deep learning models ResUnet, Pspnet, U-Net++, and Segnet are also evaluated along with two diverse benchmark datasets. Analysis shows that results obtained by the proposed PLM-Res-U-Net prove generalizability and computational efficacy with a dice score of 0.986. Additionally, PLM-Res-U-Net successfully preserves the edge strokes of the text compared with state-of-the-art models.</p></div>\",\"PeriodicalId\":38225,\"journal\":{\"name\":\"Digital Applications in Archaeology and Cultural Heritage\",\"volume\":\"34 \",\"pages\":\"Article e00360\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Applications in Archaeology and Cultural Heritage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212054824000456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Applications in Archaeology and Cultural Heritage","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212054824000456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
PLM-Res-U-Net: A light weight binarization model for enhancement of multi-textured palm leaf manuscript images
This paper proposes a deep semantic binarization model, PLM-Res-U-Net, for enhancing palm-leaf manuscripts. PLM-Res-U-Net is a lightweight model comprising encoding and decoding blocks with skip connections. The model enhances the palm leaf manuscript by efficiently retaining the text strokes by removing the degradations such as uneven illumination, aging marks, brittleness, and background discolorations. Two datasets of palm leaf manuscript collections with multiple degradation patterns and diverse textured backgrounds are used for experimentation. PLM-Res-U-Net is trained from scratch with 50 epochs with a learning rate with three sampling strategies. The performance of state-of-the-art deep learning models ResUnet, Pspnet, U-Net++, and Segnet are also evaluated along with two diverse benchmark datasets. Analysis shows that results obtained by the proposed PLM-Res-U-Net prove generalizability and computational efficacy with a dice score of 0.986. Additionally, PLM-Res-U-Net successfully preserves the edge strokes of the text compared with state-of-the-art models.