Wai Lone J Ho, Nikolai Fetisov, Lawrence O Hall, Dmitry Goldgof, Matthew B Schabath
{"title":"评估预测肺癌切除前后复发的临床和放射学特征。","authors":"Wai Lone J Ho, Nikolai Fetisov, Lawrence O Hall, Dmitry Goldgof, Matthew B Schabath","doi":"10.1117/12.3006091","DOIUrl":null,"url":null,"abstract":"<p><p>Among patients with early-stage non-small cell lung cancer (NSCLC) undergoing surgical resection, identifying who is at high-risk of recurrence can inform clinical guidelines with respect to more aggressive follow-up and/or adjuvant therapy. While predicting recurrence based on pre-surgical resection data is ideal, clinically important pathological features are only evaluated postoperatively. Therefore, we developed two supervised classification models to assess the importance of pre- and post-surgical features for predicting 5-year recurrence. An integrated dataset was generated by combining clinical covariates and radiomic features calculated from pre-surgical computed tomography images. After removing correlated radiomic features, the SHapley Additive exPlanations (SHAP) method was used to measure feature importance and select relevant features. Binary classification was performed using a Support Vector Machine, followed by a feature ablation study assessing the impact of radiomic and clinical features. We demonstrate that the post-surgical model significantly outperforms the pre-surgical model in predicting lung cancer recurrence, with tumor pathological features and peritumoral radiomic features contributing significantly to the model's performance.</p>","PeriodicalId":74505,"journal":{"name":"Proceedings of SPIE--the International Society for Optical Engineering","volume":"12926 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238903/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating clinical and radiomic features for predicting lung cancer recurrence pre- and post-tumor resection.\",\"authors\":\"Wai Lone J Ho, Nikolai Fetisov, Lawrence O Hall, Dmitry Goldgof, Matthew B Schabath\",\"doi\":\"10.1117/12.3006091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Among patients with early-stage non-small cell lung cancer (NSCLC) undergoing surgical resection, identifying who is at high-risk of recurrence can inform clinical guidelines with respect to more aggressive follow-up and/or adjuvant therapy. While predicting recurrence based on pre-surgical resection data is ideal, clinically important pathological features are only evaluated postoperatively. Therefore, we developed two supervised classification models to assess the importance of pre- and post-surgical features for predicting 5-year recurrence. An integrated dataset was generated by combining clinical covariates and radiomic features calculated from pre-surgical computed tomography images. After removing correlated radiomic features, the SHapley Additive exPlanations (SHAP) method was used to measure feature importance and select relevant features. Binary classification was performed using a Support Vector Machine, followed by a feature ablation study assessing the impact of radiomic and clinical features. We demonstrate that the post-surgical model significantly outperforms the pre-surgical model in predicting lung cancer recurrence, with tumor pathological features and peritumoral radiomic features contributing significantly to the model's performance.</p>\",\"PeriodicalId\":74505,\"journal\":{\"name\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"volume\":\"12926 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11238903/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of SPIE--the International Society for Optical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.3006091\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/4/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of SPIE--the International Society for Optical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.3006091","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating clinical and radiomic features for predicting lung cancer recurrence pre- and post-tumor resection.
Among patients with early-stage non-small cell lung cancer (NSCLC) undergoing surgical resection, identifying who is at high-risk of recurrence can inform clinical guidelines with respect to more aggressive follow-up and/or adjuvant therapy. While predicting recurrence based on pre-surgical resection data is ideal, clinically important pathological features are only evaluated postoperatively. Therefore, we developed two supervised classification models to assess the importance of pre- and post-surgical features for predicting 5-year recurrence. An integrated dataset was generated by combining clinical covariates and radiomic features calculated from pre-surgical computed tomography images. After removing correlated radiomic features, the SHapley Additive exPlanations (SHAP) method was used to measure feature importance and select relevant features. Binary classification was performed using a Support Vector Machine, followed by a feature ablation study assessing the impact of radiomic and clinical features. We demonstrate that the post-surgical model significantly outperforms the pre-surgical model in predicting lung cancer recurrence, with tumor pathological features and peritumoral radiomic features contributing significantly to the model's performance.