如何通过强化学习训练大脑实现稳定安静姿态的间歇控制策略。

IF 1.7 4区 工程技术 Q3 COMPUTER SCIENCE, CYBERNETICS
Biological Cybernetics Pub Date : 2024-08-01 Epub Date: 2024-07-12 DOI:10.1007/s00422-024-00993-0
Tomoki Takazawa, Yasuyuki Suzuki, Akihiro Nakamura, Risa Matsuo, Pietro Morasso, Taishin Nomura
{"title":"如何通过强化学习训练大脑实现稳定安静姿态的间歇控制策略。","authors":"Tomoki Takazawa, Yasuyuki Suzuki, Akihiro Nakamura, Risa Matsuo, Pietro Morasso, Taishin Nomura","doi":"10.1007/s00422-024-00993-0","DOIUrl":null,"url":null,"abstract":"<p><p>The stabilization of human quiet stance is achieved by a combination of the intrinsic elastic properties of ankle muscles and an active closed-loop activation of the ankle muscles, driven by the delayed feedback of the ongoing sway angle and the corresponding angular velocity in a way of a delayed proportional (P) and derivative (D) feedback controller. It has been shown that the active component of the stabilization process is likely to operate in an intermittent manner rather than as a continuous controller: the switching policy is defined in the phase-plane, which is divided in dangerous and safe regions, separated by appropriate switching boundaries. When the state enters a dangerous region, the delayed PD control is activated, and it is switched off when it enters a safe region, leaving the system to evolve freely. In comparison with continuous feedback control, the intermittent mechanism is more robust and capable to better reproduce postural sway patterns in healthy people. However, the superior performance of the intermittent control paradigm as well as its biological plausibility, suggested by experimental evidence of the intermittent activation of the ankle muscles, leaves open the quest of a feasible learning process, by which the brain can identify the appropriate state-dependent switching policy and tune accordingly the P and D parameters. In this work, it is shown how such a goal can be achieved with a reinforcement motor learning paradigm, building upon the evidence that, in general, the basal ganglia are known to play a central role in reinforcement learning for action selection and, in particular, were found to be specifically involved in postural stabilization.</p>","PeriodicalId":55374,"journal":{"name":"Biological Cybernetics","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289178/pdf/","citationCount":"0","resultStr":"{\"title\":\"How the brain can be trained to achieve an intermittent control strategy for stabilizing quiet stance by means of reinforcement learning.\",\"authors\":\"Tomoki Takazawa, Yasuyuki Suzuki, Akihiro Nakamura, Risa Matsuo, Pietro Morasso, Taishin Nomura\",\"doi\":\"10.1007/s00422-024-00993-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The stabilization of human quiet stance is achieved by a combination of the intrinsic elastic properties of ankle muscles and an active closed-loop activation of the ankle muscles, driven by the delayed feedback of the ongoing sway angle and the corresponding angular velocity in a way of a delayed proportional (P) and derivative (D) feedback controller. It has been shown that the active component of the stabilization process is likely to operate in an intermittent manner rather than as a continuous controller: the switching policy is defined in the phase-plane, which is divided in dangerous and safe regions, separated by appropriate switching boundaries. When the state enters a dangerous region, the delayed PD control is activated, and it is switched off when it enters a safe region, leaving the system to evolve freely. In comparison with continuous feedback control, the intermittent mechanism is more robust and capable to better reproduce postural sway patterns in healthy people. However, the superior performance of the intermittent control paradigm as well as its biological plausibility, suggested by experimental evidence of the intermittent activation of the ankle muscles, leaves open the quest of a feasible learning process, by which the brain can identify the appropriate state-dependent switching policy and tune accordingly the P and D parameters. In this work, it is shown how such a goal can be achieved with a reinforcement motor learning paradigm, building upon the evidence that, in general, the basal ganglia are known to play a central role in reinforcement learning for action selection and, in particular, were found to be specifically involved in postural stabilization.</p>\",\"PeriodicalId\":55374,\"journal\":{\"name\":\"Biological Cybernetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289178/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biological Cybernetics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00422-024-00993-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Cybernetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00422-024-00993-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
引用次数: 0

摘要

人体静态姿态的稳定是通过踝关节肌肉的固有弹性特性与踝关节肌肉的主动闭环激活相结合来实现的,踝关节肌肉的主动闭环激活是由正在进行的摇摆角和相应角速度的延迟反馈驱动的,其方式是延迟比例(P)和导数(D)反馈控制器。研究表明,稳定过程的主动部分很可能以间歇方式而非连续控制器的方式运行:切换策略在相位平面上确定,相位平面被划分为危险区域和安全区域,并由适当的切换边界分隔。当状态进入危险区域时,延迟 PD 控制被激活;当状态进入安全区域时,延迟 PD 控制被关闭,让系统自由发展。与连续反馈控制相比,间歇机制更加稳健,能够更好地再现健康人的姿势摇摆模式。然而,间歇控制范例的卓越性能及其生物学上的合理性(脚踝肌肉间歇激活的实验证据表明了这一点)仍有待于探索一种可行的学习过程,通过这种学习过程,大脑可以识别出适当的与状态相关的切换策略,并相应地调整 P 和 D 参数。在这项研究中,研究人员展示了如何通过强化运动学习范式来实现这一目标,其依据是,一般来说,基底神经节在动作选择的强化学习中发挥着核心作用,尤其是在姿势稳定方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

How the brain can be trained to achieve an intermittent control strategy for stabilizing quiet stance by means of reinforcement learning.

How the brain can be trained to achieve an intermittent control strategy for stabilizing quiet stance by means of reinforcement learning.

The stabilization of human quiet stance is achieved by a combination of the intrinsic elastic properties of ankle muscles and an active closed-loop activation of the ankle muscles, driven by the delayed feedback of the ongoing sway angle and the corresponding angular velocity in a way of a delayed proportional (P) and derivative (D) feedback controller. It has been shown that the active component of the stabilization process is likely to operate in an intermittent manner rather than as a continuous controller: the switching policy is defined in the phase-plane, which is divided in dangerous and safe regions, separated by appropriate switching boundaries. When the state enters a dangerous region, the delayed PD control is activated, and it is switched off when it enters a safe region, leaving the system to evolve freely. In comparison with continuous feedback control, the intermittent mechanism is more robust and capable to better reproduce postural sway patterns in healthy people. However, the superior performance of the intermittent control paradigm as well as its biological plausibility, suggested by experimental evidence of the intermittent activation of the ankle muscles, leaves open the quest of a feasible learning process, by which the brain can identify the appropriate state-dependent switching policy and tune accordingly the P and D parameters. In this work, it is shown how such a goal can be achieved with a reinforcement motor learning paradigm, building upon the evidence that, in general, the basal ganglia are known to play a central role in reinforcement learning for action selection and, in particular, were found to be specifically involved in postural stabilization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biological Cybernetics
Biological Cybernetics 工程技术-计算机:控制论
CiteScore
3.50
自引率
5.30%
发文量
38
审稿时长
6-12 weeks
期刊介绍: Biological Cybernetics is an interdisciplinary medium for theoretical and application-oriented aspects of information processing in organisms, including sensory, motor, cognitive, and ecological phenomena. Topics covered include: mathematical modeling of biological systems; computational, theoretical or engineering studies with relevance for understanding biological information processing; and artificial implementation of biological information processing and self-organizing principles. Under the main aspects of performance and function of systems, emphasis is laid on communication between life sciences and technical/theoretical disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信