Julia C. F. Quintanilha, William Kevin Kelly, Federico Innocenti
{"title":"除 KCNAB1 基因变异外,血浆中 VEGF-A 和血管生成素-2 水平也有助于预测贝伐珠单抗诱发高血压的风险。","authors":"Julia C. F. Quintanilha, William Kevin Kelly, Federico Innocenti","doi":"10.1038/s41397-024-00342-1","DOIUrl":null,"url":null,"abstract":"Bevacizumab-induced hypertension poses a therapeutic challenge and identifying biomarkers for hypertension can enhance therapy safety. Lower plasma levels of VEGF-A, angiopoietin-2, and rs6770663 in KCNAB1 were previously associated with increased risk of bevacizumab-induced hypertension. This study investigated whether these factors independently contribute to grade 2–3 bevacizumab-induced hypertension risk in 277 cancer patients (CALGB/Alliance 90401). Multivariable analyses assessed the independent association of each factor and hypertension. Likelihood ratio test (LRT) evaluated the explanatory significance of combining protein levels and rs6770663 in predicting hypertension. Boostrap was employed to assess the mediation effect of protein levels on the rs6770663 association with hypertension. Lower protein levels and rs6770663 were independently associated with increased hypertension risk. Adding rs6770663 to protein levels improved the prediction of hypertension (LRT p = 0.0002), with no mediation effect observed. Protein levels of VEGF-A, angiopoietin-2 and rs6770663 in KCNAB1 are independent risk factors and, when combined, may improve prediction of bevacizumab-induced hypertension. ClinicalTrials.gov Identifier: NCT00110214.","PeriodicalId":54624,"journal":{"name":"Pharmacogenomics Journal","volume":"24 4","pages":"1-4"},"PeriodicalIF":2.9000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41397-024-00342-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Contribution of plasma levels of VEGF-A and angiopoietin-2 in addition to a genetic variant in KCNAB1 to predict the risk of bevacizumab-induced hypertension\",\"authors\":\"Julia C. F. Quintanilha, William Kevin Kelly, Federico Innocenti\",\"doi\":\"10.1038/s41397-024-00342-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bevacizumab-induced hypertension poses a therapeutic challenge and identifying biomarkers for hypertension can enhance therapy safety. Lower plasma levels of VEGF-A, angiopoietin-2, and rs6770663 in KCNAB1 were previously associated with increased risk of bevacizumab-induced hypertension. This study investigated whether these factors independently contribute to grade 2–3 bevacizumab-induced hypertension risk in 277 cancer patients (CALGB/Alliance 90401). Multivariable analyses assessed the independent association of each factor and hypertension. Likelihood ratio test (LRT) evaluated the explanatory significance of combining protein levels and rs6770663 in predicting hypertension. Boostrap was employed to assess the mediation effect of protein levels on the rs6770663 association with hypertension. Lower protein levels and rs6770663 were independently associated with increased hypertension risk. Adding rs6770663 to protein levels improved the prediction of hypertension (LRT p = 0.0002), with no mediation effect observed. Protein levels of VEGF-A, angiopoietin-2 and rs6770663 in KCNAB1 are independent risk factors and, when combined, may improve prediction of bevacizumab-induced hypertension. ClinicalTrials.gov Identifier: NCT00110214.\",\"PeriodicalId\":54624,\"journal\":{\"name\":\"Pharmacogenomics Journal\",\"volume\":\"24 4\",\"pages\":\"1-4\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41397-024-00342-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacogenomics Journal\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.nature.com/articles/s41397-024-00342-1\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacogenomics Journal","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41397-024-00342-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Contribution of plasma levels of VEGF-A and angiopoietin-2 in addition to a genetic variant in KCNAB1 to predict the risk of bevacizumab-induced hypertension
Bevacizumab-induced hypertension poses a therapeutic challenge and identifying biomarkers for hypertension can enhance therapy safety. Lower plasma levels of VEGF-A, angiopoietin-2, and rs6770663 in KCNAB1 were previously associated with increased risk of bevacizumab-induced hypertension. This study investigated whether these factors independently contribute to grade 2–3 bevacizumab-induced hypertension risk in 277 cancer patients (CALGB/Alliance 90401). Multivariable analyses assessed the independent association of each factor and hypertension. Likelihood ratio test (LRT) evaluated the explanatory significance of combining protein levels and rs6770663 in predicting hypertension. Boostrap was employed to assess the mediation effect of protein levels on the rs6770663 association with hypertension. Lower protein levels and rs6770663 were independently associated with increased hypertension risk. Adding rs6770663 to protein levels improved the prediction of hypertension (LRT p = 0.0002), with no mediation effect observed. Protein levels of VEGF-A, angiopoietin-2 and rs6770663 in KCNAB1 are independent risk factors and, when combined, may improve prediction of bevacizumab-induced hypertension. ClinicalTrials.gov Identifier: NCT00110214.
期刊介绍:
The Pharmacogenomics Journal is a print and electronic journal, which is dedicated to the rapid publication of original research on pharmacogenomics and its clinical applications.
Key areas of coverage include:
Personalized medicine
Effects of genetic variability on drug toxicity and efficacy
Identification and functional characterization of polymorphisms relevant to drug action
Pharmacodynamic and pharmacokinetic variations and drug efficacy
Integration of new developments in the genome project and proteomics into clinical medicine, pharmacology, and therapeutics
Clinical applications of genomic science
Identification of novel genomic targets for drug development
Potential benefits of pharmacogenomics.