{"title":"葡萄膜黑色素瘤远处转移预测系统:基于机器学习的回顾性观察研究","authors":"Shi-Nan Wu, Dan-Yi Qin, Linfangzi Zhu, Shu-Jia Guo, Xiang Li, Cai-Hong Huang, Jiaoyue Hu, Zuguo Liu","doi":"10.1111/cas.16276","DOIUrl":null,"url":null,"abstract":"<p>Uveal melanoma (UM) patients face a significant risk of distant metastasis, closely tied to a poor prognosis. Despite this, there is a dearth of research utilizing big data to predict UM distant metastasis. This study leveraged machine learning methods on the Surveillance, Epidemiology, and End Results (SEER) database to forecast the risk probability of distant metastasis. Therefore, the information on UM patients from the SEER database (2000–2020) was split into a 7:3 ratio training set and an internal test set based on distant metastasis presence. Univariate and multivariate logistic regression analyses assessed distant metastasis risk factors. Six machine learning methods constructed a predictive model post-feature variable selection. The model evaluation identified the multilayer perceptron (MLP) as optimal. Shapley additive explanations (SHAP) interpreted the chosen model. A web-based calculator personalized risk probabilities for UM patients. The results show that nine feature variables contributed to the machine learning model. The MLP model demonstrated superior predictive accuracy (Precision = 0.788; ROC AUC = 0.876; PR AUC = 0.788). Grade recode, age, primary site, time from diagnosis to treatment initiation, and total number of malignant tumors were identified as distant metastasis risk factors. Diagnostic method, laterality, rural–urban continuum code, and radiation recode emerged as protective factors. The developed web calculator utilizes the MLP model for personalized risk assessments. In conclusion, the MLP machine learning model emerges as the optimal tool for predicting distant metastasis in UM patients. This model facilitates personalized risk assessments, empowering early and tailored treatment strategies.</p>","PeriodicalId":9580,"journal":{"name":"Cancer Science","volume":"115 9","pages":"3107-3126"},"PeriodicalIF":4.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cas.16276","citationCount":"0","resultStr":"{\"title\":\"Uveal melanoma distant metastasis prediction system: A retrospective observational study based on machine learning\",\"authors\":\"Shi-Nan Wu, Dan-Yi Qin, Linfangzi Zhu, Shu-Jia Guo, Xiang Li, Cai-Hong Huang, Jiaoyue Hu, Zuguo Liu\",\"doi\":\"10.1111/cas.16276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Uveal melanoma (UM) patients face a significant risk of distant metastasis, closely tied to a poor prognosis. Despite this, there is a dearth of research utilizing big data to predict UM distant metastasis. This study leveraged machine learning methods on the Surveillance, Epidemiology, and End Results (SEER) database to forecast the risk probability of distant metastasis. Therefore, the information on UM patients from the SEER database (2000–2020) was split into a 7:3 ratio training set and an internal test set based on distant metastasis presence. Univariate and multivariate logistic regression analyses assessed distant metastasis risk factors. Six machine learning methods constructed a predictive model post-feature variable selection. The model evaluation identified the multilayer perceptron (MLP) as optimal. Shapley additive explanations (SHAP) interpreted the chosen model. A web-based calculator personalized risk probabilities for UM patients. The results show that nine feature variables contributed to the machine learning model. The MLP model demonstrated superior predictive accuracy (Precision = 0.788; ROC AUC = 0.876; PR AUC = 0.788). Grade recode, age, primary site, time from diagnosis to treatment initiation, and total number of malignant tumors were identified as distant metastasis risk factors. Diagnostic method, laterality, rural–urban continuum code, and radiation recode emerged as protective factors. The developed web calculator utilizes the MLP model for personalized risk assessments. In conclusion, the MLP machine learning model emerges as the optimal tool for predicting distant metastasis in UM patients. This model facilitates personalized risk assessments, empowering early and tailored treatment strategies.</p>\",\"PeriodicalId\":9580,\"journal\":{\"name\":\"Cancer Science\",\"volume\":\"115 9\",\"pages\":\"3107-3126\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cas.16276\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Science\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/cas.16276\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Science","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/cas.16276","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
Uveal melanoma distant metastasis prediction system: A retrospective observational study based on machine learning
Uveal melanoma (UM) patients face a significant risk of distant metastasis, closely tied to a poor prognosis. Despite this, there is a dearth of research utilizing big data to predict UM distant metastasis. This study leveraged machine learning methods on the Surveillance, Epidemiology, and End Results (SEER) database to forecast the risk probability of distant metastasis. Therefore, the information on UM patients from the SEER database (2000–2020) was split into a 7:3 ratio training set and an internal test set based on distant metastasis presence. Univariate and multivariate logistic regression analyses assessed distant metastasis risk factors. Six machine learning methods constructed a predictive model post-feature variable selection. The model evaluation identified the multilayer perceptron (MLP) as optimal. Shapley additive explanations (SHAP) interpreted the chosen model. A web-based calculator personalized risk probabilities for UM patients. The results show that nine feature variables contributed to the machine learning model. The MLP model demonstrated superior predictive accuracy (Precision = 0.788; ROC AUC = 0.876; PR AUC = 0.788). Grade recode, age, primary site, time from diagnosis to treatment initiation, and total number of malignant tumors were identified as distant metastasis risk factors. Diagnostic method, laterality, rural–urban continuum code, and radiation recode emerged as protective factors. The developed web calculator utilizes the MLP model for personalized risk assessments. In conclusion, the MLP machine learning model emerges as the optimal tool for predicting distant metastasis in UM patients. This model facilitates personalized risk assessments, empowering early and tailored treatment strategies.
期刊介绍:
Cancer Science (formerly Japanese Journal of Cancer Research) is a monthly publication of the Japanese Cancer Association. First published in 1907, the Journal continues to publish original articles, editorials, and letters to the editor, describing original research in the fields of basic, translational and clinical cancer research. The Journal also accepts reports and case reports.
Cancer Science aims to present highly significant and timely findings that have a significant clinical impact on oncologists or that may alter the disease concept of a tumor. The Journal will not publish case reports that describe a rare tumor or condition without new findings to be added to previous reports; combination of different tumors without new suggestive findings for oncological research; remarkable effect of already known treatments without suggestive data to explain the exceptional result. Review articles may also be published.