Yuehai Xiao, Zongjian Liang, Jun Qiao, Zhiqiang Zhu, Bei Liu, Yuan Tian
{"title":"在糖尿病诱导的睾丸损伤中,BRD7通过调节簇蛋白启动子的高甲基化和抑制AMPK信号传导促进铁变态反应。","authors":"Yuehai Xiao, Zongjian Liang, Jun Qiao, Zhiqiang Zhu, Bei Liu, Yuan Tian","doi":"10.1186/s10020-024-00868-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Diabetes mellitus (DM)-induced testicular damage is associated with sexual dysfunction and male infertility in DM patients. However, the pathogenesis of DM-induced testicular damage remains largely undefined.</p><p><strong>Methods: </strong>A streptozotocin (STZ)-induced diabetic model and high glucose (HG)-treated in vitro diabetic model were established. The histological changes of testes were assessed by H&E staining. Serum testosterone, iron, MDA and GSH levels were detected using commercial kits. Cell viability and lipid peroxidation was monitored by MTT assay and BODIPY 581/591 C11 staining, respectively. qRT-PCR, immunohistochemistry (IHC) or Western blotting were employed to detect the levels of BRD7, Clusterin, EZH2 and AMPK signaling molecules. The associations among BRD7, EZH2 and DNMT3a were detected by co-IP, and the transcriptional regulation of Clusterin was monitored by methylation-specific PCR (MSP) and ChIP assay.</p><p><strong>Results: </strong>Ferroptosis was associated with DM-induced testicular damage in STZ mice and HG-treated GC-1spg cells, and this was accompanied with the upregulation of BRD7. Knockdown of BRD7 suppressed HG-induced ferroptosis, as well as HG-induced Clusterin promoter methylation and HG-inactivated AMPK signaling in GC-1spg cells. Mechanistical studies revealed that BRD7 directly bound to EZH2 and regulated Clusterin promoter methylation via recruiting DNMT3a. Knockdown of Clusterin or inactivation of AMPK signaling reverses BRD7 silencing-suppressed ferroptosis in GC-1spg cells. In vivo findings showed that lack of BRD7 protected against diabetes-induced testicular damage and ferroptosis via increasing Clusterin expression and activating AMPK signaling.</p><p><strong>Conclusion: </strong>BRD7 suppressed Clusterin expression via modulating Clusterin promoter hypermethylation in an EZH2 dependent manner, thereby suppressing AMPK signaling to facilitate ferroptosis and induce diabetes-associated testicular damage.</p>","PeriodicalId":18813,"journal":{"name":"Molecular Medicine","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11241864/pdf/","citationCount":"0","resultStr":"{\"title\":\"BRD7 facilitates ferroptosis via modulating clusterin promoter hypermethylation and suppressing AMPK signaling in diabetes-induced testicular damage.\",\"authors\":\"Yuehai Xiao, Zongjian Liang, Jun Qiao, Zhiqiang Zhu, Bei Liu, Yuan Tian\",\"doi\":\"10.1186/s10020-024-00868-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Diabetes mellitus (DM)-induced testicular damage is associated with sexual dysfunction and male infertility in DM patients. However, the pathogenesis of DM-induced testicular damage remains largely undefined.</p><p><strong>Methods: </strong>A streptozotocin (STZ)-induced diabetic model and high glucose (HG)-treated in vitro diabetic model were established. The histological changes of testes were assessed by H&E staining. Serum testosterone, iron, MDA and GSH levels were detected using commercial kits. Cell viability and lipid peroxidation was monitored by MTT assay and BODIPY 581/591 C11 staining, respectively. qRT-PCR, immunohistochemistry (IHC) or Western blotting were employed to detect the levels of BRD7, Clusterin, EZH2 and AMPK signaling molecules. The associations among BRD7, EZH2 and DNMT3a were detected by co-IP, and the transcriptional regulation of Clusterin was monitored by methylation-specific PCR (MSP) and ChIP assay.</p><p><strong>Results: </strong>Ferroptosis was associated with DM-induced testicular damage in STZ mice and HG-treated GC-1spg cells, and this was accompanied with the upregulation of BRD7. Knockdown of BRD7 suppressed HG-induced ferroptosis, as well as HG-induced Clusterin promoter methylation and HG-inactivated AMPK signaling in GC-1spg cells. Mechanistical studies revealed that BRD7 directly bound to EZH2 and regulated Clusterin promoter methylation via recruiting DNMT3a. Knockdown of Clusterin or inactivation of AMPK signaling reverses BRD7 silencing-suppressed ferroptosis in GC-1spg cells. In vivo findings showed that lack of BRD7 protected against diabetes-induced testicular damage and ferroptosis via increasing Clusterin expression and activating AMPK signaling.</p><p><strong>Conclusion: </strong>BRD7 suppressed Clusterin expression via modulating Clusterin promoter hypermethylation in an EZH2 dependent manner, thereby suppressing AMPK signaling to facilitate ferroptosis and induce diabetes-associated testicular damage.</p>\",\"PeriodicalId\":18813,\"journal\":{\"name\":\"Molecular Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11241864/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s10020-024-00868-x\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s10020-024-00868-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
BRD7 facilitates ferroptosis via modulating clusterin promoter hypermethylation and suppressing AMPK signaling in diabetes-induced testicular damage.
Background: Diabetes mellitus (DM)-induced testicular damage is associated with sexual dysfunction and male infertility in DM patients. However, the pathogenesis of DM-induced testicular damage remains largely undefined.
Methods: A streptozotocin (STZ)-induced diabetic model and high glucose (HG)-treated in vitro diabetic model were established. The histological changes of testes were assessed by H&E staining. Serum testosterone, iron, MDA and GSH levels were detected using commercial kits. Cell viability and lipid peroxidation was monitored by MTT assay and BODIPY 581/591 C11 staining, respectively. qRT-PCR, immunohistochemistry (IHC) or Western blotting were employed to detect the levels of BRD7, Clusterin, EZH2 and AMPK signaling molecules. The associations among BRD7, EZH2 and DNMT3a were detected by co-IP, and the transcriptional regulation of Clusterin was monitored by methylation-specific PCR (MSP) and ChIP assay.
Results: Ferroptosis was associated with DM-induced testicular damage in STZ mice and HG-treated GC-1spg cells, and this was accompanied with the upregulation of BRD7. Knockdown of BRD7 suppressed HG-induced ferroptosis, as well as HG-induced Clusterin promoter methylation and HG-inactivated AMPK signaling in GC-1spg cells. Mechanistical studies revealed that BRD7 directly bound to EZH2 and regulated Clusterin promoter methylation via recruiting DNMT3a. Knockdown of Clusterin or inactivation of AMPK signaling reverses BRD7 silencing-suppressed ferroptosis in GC-1spg cells. In vivo findings showed that lack of BRD7 protected against diabetes-induced testicular damage and ferroptosis via increasing Clusterin expression and activating AMPK signaling.
Conclusion: BRD7 suppressed Clusterin expression via modulating Clusterin promoter hypermethylation in an EZH2 dependent manner, thereby suppressing AMPK signaling to facilitate ferroptosis and induce diabetes-associated testicular damage.
期刊介绍:
Molecular Medicine is an open access journal that focuses on publishing recent findings related to disease pathogenesis at the molecular or physiological level. These insights can potentially contribute to the development of specific tools for disease diagnosis, treatment, or prevention. The journal considers manuscripts that present material pertinent to the genetic, molecular, or cellular underpinnings of critical physiological or disease processes. Submissions to Molecular Medicine are expected to elucidate the broader implications of the research findings for human disease and medicine in a manner that is accessible to a wide audience.