评估慢性加兰他敏在创伤性脑损伤临床前模型中对持续注意力和胆碱能神经递质的疗效

IF 3.9 2区 医学 Q1 CLINICAL NEUROLOGY
Journal of neurotrauma Pub Date : 2024-11-01 Epub Date: 2024-07-12 DOI:10.1089/neu.2024.0173
Eleni H Moschonas, Haley E Capeci, Ellen M Annas, Veronica B Domyslawski, Jade A Steber, Hailey M Donald, Nicholas R Genkinger, Piper L Rennerfeldt, Rachel A Bittner, Vincent J Vozzella, Jeffrey P Cheng, Anthony E Kline, Corina O Bondi
{"title":"评估慢性加兰他敏在创伤性脑损伤临床前模型中对持续注意力和胆碱能神经递质的疗效","authors":"Eleni H Moschonas, Haley E Capeci, Ellen M Annas, Veronica B Domyslawski, Jade A Steber, Hailey M Donald, Nicholas R Genkinger, Piper L Rennerfeldt, Rachel A Bittner, Vincent J Vozzella, Jeffrey P Cheng, Anthony E Kline, Corina O Bondi","doi":"10.1089/neu.2024.0173","DOIUrl":null,"url":null,"abstract":"<p><p>Cholinergic disruptions underlie attentional deficits following traumatic brain injury (TBI). Yet, drugs specifically targeting acetylcholinesterase (AChE) inhibition have yielded mixed outcomes. Therefore, we hypothesized that galantamine (GAL), a dual-action competitive AChE inhibitor and α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator, provided chronically after injury, will attenuate TBI-induced deficits of sustained attention and enhance ACh efflux in the medial prefrontal cortex (mPFC), as assessed by <i>in vivo</i> microdialysis. In Experiment 1, adult male rats (<i>n</i> = 10-15/group) trained in the 3-choice serial reaction time (3-CSRT) test were randomly assigned to controlled cortical impact (CCI) or sham surgery and administered GAL (0.5, 2.0, or 5.0 mg/kg; i.p.) or saline vehicle (VEH; 1 mL/kg; i.p) beginning 24-h post-surgery and once daily thereafter for 27 days. Measures of sustained attention and distractibility were assessed on post-operative days 21-25 in the 3-CSRT, following which cortical lesion volume and basal forebrain cholinergic cells were quantified on day 27. In Experiment 2, adult male rats (<i>n</i> = 3-4/group) received a CCI and 24 h later administered (i.p.) one of the three doses of GAL or VEH for 21 days to quantify the dose-dependent effect of GAL on <i>in vivo</i> ACh efflux in the mPFC. Two weeks after the CCI, a guide cannula was implanted in the right mPFC. On post-surgery day 21, baseline and post-injection dialysate samples were collected in a temporally matched manner with the cohort undergoing behavior. ACh levels were analyzed using reverse phase high-performance liquid chromatography (HPLC) coupled to an electrochemical detector. Cortical lesion volume was quantified on day 22. The data were subjected to ANOVA, with repeated measures where appropriate, followed by Newman-Keuls <i>post hoc</i> analyses. All TBI groups displayed impaired sustained attention versus the pooled SHAM controls (<i>p</i>'s < 0.05). Moreover, the highest dose of GAL (5.0 mg/kg) exacerbated attentional deficits relative to VEH and the two lower doses of GAL (<i>p</i>'s < 0.05). TBI significantly reduced cholinergic cells in the right basal forebrain, regardless of treatment condition, versus SHAM (<i>p</i> < 0.05). <i>In vivo</i> microdialysis revealed no differences in basal ACh in the mPFC; however, GAL (5.0 mg/kg) significantly increased ACh efflux 30 min following injection compared to the VEH and the other GAL (0.5 and 2.0 mg/kg) treated groups (<i>p</i>'s < 0.05). In both experiments, there were no differences in cortical lesion volume across treatment groups (<i>p</i>'s > 0.05). In summary, albeit the higher dose of GAL increased ACh release, it did not improve measures of sustained attention or histopathological markers, thereby partially supporting the hypothesis and providing the impetus for further investigations into alternative cholinergic pharmacotherapies such as nAChR positive allosteric modulators.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":"2428-2441"},"PeriodicalIF":3.9000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698658/pdf/","citationCount":"0","resultStr":"{\"title\":\"Evaluating the Efficacy of Chronic Galantamine on Sustained Attention and Cholinergic Neurotransmission in A Pre-Clinical Model of Traumatic Brain Injury.\",\"authors\":\"Eleni H Moschonas, Haley E Capeci, Ellen M Annas, Veronica B Domyslawski, Jade A Steber, Hailey M Donald, Nicholas R Genkinger, Piper L Rennerfeldt, Rachel A Bittner, Vincent J Vozzella, Jeffrey P Cheng, Anthony E Kline, Corina O Bondi\",\"doi\":\"10.1089/neu.2024.0173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cholinergic disruptions underlie attentional deficits following traumatic brain injury (TBI). Yet, drugs specifically targeting acetylcholinesterase (AChE) inhibition have yielded mixed outcomes. Therefore, we hypothesized that galantamine (GAL), a dual-action competitive AChE inhibitor and α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator, provided chronically after injury, will attenuate TBI-induced deficits of sustained attention and enhance ACh efflux in the medial prefrontal cortex (mPFC), as assessed by <i>in vivo</i> microdialysis. In Experiment 1, adult male rats (<i>n</i> = 10-15/group) trained in the 3-choice serial reaction time (3-CSRT) test were randomly assigned to controlled cortical impact (CCI) or sham surgery and administered GAL (0.5, 2.0, or 5.0 mg/kg; i.p.) or saline vehicle (VEH; 1 mL/kg; i.p) beginning 24-h post-surgery and once daily thereafter for 27 days. Measures of sustained attention and distractibility were assessed on post-operative days 21-25 in the 3-CSRT, following which cortical lesion volume and basal forebrain cholinergic cells were quantified on day 27. In Experiment 2, adult male rats (<i>n</i> = 3-4/group) received a CCI and 24 h later administered (i.p.) one of the three doses of GAL or VEH for 21 days to quantify the dose-dependent effect of GAL on <i>in vivo</i> ACh efflux in the mPFC. Two weeks after the CCI, a guide cannula was implanted in the right mPFC. On post-surgery day 21, baseline and post-injection dialysate samples were collected in a temporally matched manner with the cohort undergoing behavior. ACh levels were analyzed using reverse phase high-performance liquid chromatography (HPLC) coupled to an electrochemical detector. Cortical lesion volume was quantified on day 22. The data were subjected to ANOVA, with repeated measures where appropriate, followed by Newman-Keuls <i>post hoc</i> analyses. All TBI groups displayed impaired sustained attention versus the pooled SHAM controls (<i>p</i>'s < 0.05). Moreover, the highest dose of GAL (5.0 mg/kg) exacerbated attentional deficits relative to VEH and the two lower doses of GAL (<i>p</i>'s < 0.05). TBI significantly reduced cholinergic cells in the right basal forebrain, regardless of treatment condition, versus SHAM (<i>p</i> < 0.05). <i>In vivo</i> microdialysis revealed no differences in basal ACh in the mPFC; however, GAL (5.0 mg/kg) significantly increased ACh efflux 30 min following injection compared to the VEH and the other GAL (0.5 and 2.0 mg/kg) treated groups (<i>p</i>'s < 0.05). In both experiments, there were no differences in cortical lesion volume across treatment groups (<i>p</i>'s > 0.05). In summary, albeit the higher dose of GAL increased ACh release, it did not improve measures of sustained attention or histopathological markers, thereby partially supporting the hypothesis and providing the impetus for further investigations into alternative cholinergic pharmacotherapies such as nAChR positive allosteric modulators.</p>\",\"PeriodicalId\":16512,\"journal\":{\"name\":\"Journal of neurotrauma\",\"volume\":\" \",\"pages\":\"2428-2441\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11698658/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurotrauma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/neu.2024.0173\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurotrauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/neu.2024.0173","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/12 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

胆碱能紊乱是创伤性脑损伤(TBI)后注意力缺陷的基础。然而,专门针对乙酰胆碱酯酶(AChE)抑制的药物效果不一。因此,我们假设在大鼠受伤后长期服用加兰他敏(Galantamine,GAL)--一种双效竞争性乙酰胆碱酯酶抑制剂和α7烟碱乙酰胆碱受体(nAChR)正性异位调节剂--将减轻创伤性脑损伤引起的持续注意力缺陷,并增强内侧前额叶皮层(mPFC)的乙酰胆碱外流,这将通过体内微透析进行评估。在实验 1 中,成年雄性大鼠(n = 10-15/组)接受了三选一连续反应时间(3-CSRT)测试训练,它们被随机分配到控制性皮层冲击(CCI)或假手术中,并在手术后 24 小时开始服用 GAL(0.5、2.0 或 5.0 mg/kg;i.p.)或生理盐水载体(VEH;1 mL/kg;i.p.),此后每天服用一次,连续服用 27 天。在 3-CSRT 中,术后第 21-25 天对持续注意力和分心进行了评估,随后在第 27 天对皮质病变体积和基底前脑胆碱能细胞进行了量化。在实验 2 中,成年雄性大鼠(n = 3-4只/组)接受了CCI,24小时后(静脉注射)三种剂量之一的GAL或VEH,持续21天,以量化GAL对mPFC体内ACh外流的剂量依赖效应。CCI两周后,在右侧mPFC植入引导插管。手术后第 21 天,以时间匹配的方式收集基线和注射后透析液样本。使用反相高效液相色谱法(HPLC)和电化学检测器分析乙酰胆碱水平。皮质病变体积在第 22 天进行量化。对数据进行方差分析,并酌情进行重复测量,然后进行纽曼-基尔斯(Newman-Keuls)事后分析。与集中的 SHAM 对照组相比,所有 TBI 组均显示出持续注意力受损(P's < 0.05)。此外,与 VEH 和两种较低剂量的 GAL 相比,最高剂量的 GAL(5.0 毫克/千克)加剧了注意力缺陷(p's < 0.05)。与SHAM相比,TBI明显减少了右侧基底前脑的胆碱能细胞,无论治疗条件如何(p < 0.05)。体内微透析显示 mPFC 中的基础 ACh 没有差异;但是,与 VEH 和其他 GAL(0.5 和 2.0 mg/kg)处理组相比,GAL(5.0 mg/kg)在注射后 30 分钟明显增加了 ACh 的外流(p's < 0.05)。在这两项实验中,各处理组的皮质病变体积没有差异(P>0.05)。总之,尽管较高剂量的 GAL 增加了乙酰胆碱释放,但并没有改善持续注意力或组织病理学标志物的测量,从而部分支持了假说,并为进一步研究替代胆碱能药物疗法(如 nAChR 阳性异位调节剂)提供了动力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluating the Efficacy of Chronic Galantamine on Sustained Attention and Cholinergic Neurotransmission in A Pre-Clinical Model of Traumatic Brain Injury.

Cholinergic disruptions underlie attentional deficits following traumatic brain injury (TBI). Yet, drugs specifically targeting acetylcholinesterase (AChE) inhibition have yielded mixed outcomes. Therefore, we hypothesized that galantamine (GAL), a dual-action competitive AChE inhibitor and α7 nicotinic acetylcholine receptor (nAChR) positive allosteric modulator, provided chronically after injury, will attenuate TBI-induced deficits of sustained attention and enhance ACh efflux in the medial prefrontal cortex (mPFC), as assessed by in vivo microdialysis. In Experiment 1, adult male rats (n = 10-15/group) trained in the 3-choice serial reaction time (3-CSRT) test were randomly assigned to controlled cortical impact (CCI) or sham surgery and administered GAL (0.5, 2.0, or 5.0 mg/kg; i.p.) or saline vehicle (VEH; 1 mL/kg; i.p) beginning 24-h post-surgery and once daily thereafter for 27 days. Measures of sustained attention and distractibility were assessed on post-operative days 21-25 in the 3-CSRT, following which cortical lesion volume and basal forebrain cholinergic cells were quantified on day 27. In Experiment 2, adult male rats (n = 3-4/group) received a CCI and 24 h later administered (i.p.) one of the three doses of GAL or VEH for 21 days to quantify the dose-dependent effect of GAL on in vivo ACh efflux in the mPFC. Two weeks after the CCI, a guide cannula was implanted in the right mPFC. On post-surgery day 21, baseline and post-injection dialysate samples were collected in a temporally matched manner with the cohort undergoing behavior. ACh levels were analyzed using reverse phase high-performance liquid chromatography (HPLC) coupled to an electrochemical detector. Cortical lesion volume was quantified on day 22. The data were subjected to ANOVA, with repeated measures where appropriate, followed by Newman-Keuls post hoc analyses. All TBI groups displayed impaired sustained attention versus the pooled SHAM controls (p's < 0.05). Moreover, the highest dose of GAL (5.0 mg/kg) exacerbated attentional deficits relative to VEH and the two lower doses of GAL (p's < 0.05). TBI significantly reduced cholinergic cells in the right basal forebrain, regardless of treatment condition, versus SHAM (p < 0.05). In vivo microdialysis revealed no differences in basal ACh in the mPFC; however, GAL (5.0 mg/kg) significantly increased ACh efflux 30 min following injection compared to the VEH and the other GAL (0.5 and 2.0 mg/kg) treated groups (p's < 0.05). In both experiments, there were no differences in cortical lesion volume across treatment groups (p's > 0.05). In summary, albeit the higher dose of GAL increased ACh release, it did not improve measures of sustained attention or histopathological markers, thereby partially supporting the hypothesis and providing the impetus for further investigations into alternative cholinergic pharmacotherapies such as nAChR positive allosteric modulators.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of neurotrauma
Journal of neurotrauma 医学-临床神经学
CiteScore
9.20
自引率
7.10%
发文量
233
审稿时长
3 months
期刊介绍: Journal of Neurotrauma is the flagship, peer-reviewed publication for reporting on the latest advances in both the clinical and laboratory investigation of traumatic brain and spinal cord injury. The Journal focuses on the basic pathobiology of injury to the central nervous system, while considering preclinical and clinical trials targeted at improving both the early management and long-term care and recovery of traumatically injured patients. This is the essential journal publishing cutting-edge basic and translational research in traumatically injured human and animal studies, with emphasis on neurodegenerative disease research linked to CNS trauma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信