Dio3剂量的跨代表观遗传自我记忆与Meg3甲基化以及生长轨迹和新生儿激素的改变有关。

IF 2.9 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Epigenetics Pub Date : 2024-12-01 Epub Date: 2024-07-11 DOI:10.1080/15592294.2024.2376948
M Elena Martinez, Aldona Karaczyn, Zhaofei Wu, Christian A Bennett, Kassey L Matoin, Heather M Daigle, Arturo Hernandez
{"title":"Dio3剂量的跨代表观遗传自我记忆与Meg3甲基化以及生长轨迹和新生儿激素的改变有关。","authors":"M Elena Martinez, Aldona Karaczyn, Zhaofei Wu, Christian A Bennett, Kassey L Matoin, Heather M Daigle, Arturo Hernandez","doi":"10.1080/15592294.2024.2376948","DOIUrl":null,"url":null,"abstract":"<p><p>Intergenerational and transgenerational epigenetic effects resulting from conditions in previous generations can contribute to environmental adaptation as well as disease susceptibility. Previous studies in rodent and human models have shown that abnormal developmental exposure to thyroid hormone affects endocrine function and thyroid hormone sensitivity in later generations. Since the imprinted type 3 deiodinase gene (<i>Dio3</i>) regulates sensitivity to thyroid hormones, we hypothesize its epigenetic regulation is altered in descendants of thyroid hormone overexposed individuals. Using DIO3-deficient mice as a model of developmental thyrotoxicosis, we investigated <i>Dio3</i> total and allelic expression and growth and endocrine phenotypes in descendants. We observed that male and female developmental overexposure to thyroid hormone altered total and allelic <i>Dio3</i> expression in genetically intact descendants in a tissue-specific manner. This was associated with abnormal growth and neonatal levels of thyroid hormone and leptin. Descendant mice also exhibited molecular abnormalities in the <i>Dlk1-Dio3</i> imprinted domain, including increased methylation in <i>Meg3</i> and altered foetal brain expression of other genes of the <i>Dlk1-Dio3</i> imprinted domain. These molecular abnormalities were also observed in the tissues and germ line of DIO3-deficient ancestors originally overexposed to thyroid hormone <i>in utero</i>. Our results provide a novel paradigm of epigenetic self-memory by which <i>Dio3</i> gene dosage in a given individual, and its dependent developmental exposure to thyroid hormone, influences its own expression in future generations. This mechanism of epigenetic self-correction of <i>Dio3</i> expression in each generation may be instrumental in descendants for their adaptive programming of developmental growth and adult endocrine function.</p>","PeriodicalId":11767,"journal":{"name":"Epigenetics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244338/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transgenerational epigenetic self-memory of <i>Dio3</i> dosage is associated with <i>Meg3</i> methylation and altered growth trajectories and neonatal hormones.\",\"authors\":\"M Elena Martinez, Aldona Karaczyn, Zhaofei Wu, Christian A Bennett, Kassey L Matoin, Heather M Daigle, Arturo Hernandez\",\"doi\":\"10.1080/15592294.2024.2376948\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Intergenerational and transgenerational epigenetic effects resulting from conditions in previous generations can contribute to environmental adaptation as well as disease susceptibility. Previous studies in rodent and human models have shown that abnormal developmental exposure to thyroid hormone affects endocrine function and thyroid hormone sensitivity in later generations. Since the imprinted type 3 deiodinase gene (<i>Dio3</i>) regulates sensitivity to thyroid hormones, we hypothesize its epigenetic regulation is altered in descendants of thyroid hormone overexposed individuals. Using DIO3-deficient mice as a model of developmental thyrotoxicosis, we investigated <i>Dio3</i> total and allelic expression and growth and endocrine phenotypes in descendants. We observed that male and female developmental overexposure to thyroid hormone altered total and allelic <i>Dio3</i> expression in genetically intact descendants in a tissue-specific manner. This was associated with abnormal growth and neonatal levels of thyroid hormone and leptin. Descendant mice also exhibited molecular abnormalities in the <i>Dlk1-Dio3</i> imprinted domain, including increased methylation in <i>Meg3</i> and altered foetal brain expression of other genes of the <i>Dlk1-Dio3</i> imprinted domain. These molecular abnormalities were also observed in the tissues and germ line of DIO3-deficient ancestors originally overexposed to thyroid hormone <i>in utero</i>. Our results provide a novel paradigm of epigenetic self-memory by which <i>Dio3</i> gene dosage in a given individual, and its dependent developmental exposure to thyroid hormone, influences its own expression in future generations. This mechanism of epigenetic self-correction of <i>Dio3</i> expression in each generation may be instrumental in descendants for their adaptive programming of developmental growth and adult endocrine function.</p>\",\"PeriodicalId\":11767,\"journal\":{\"name\":\"Epigenetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11244338/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epigenetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/15592294.2024.2376948\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epigenetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/15592294.2024.2376948","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/11 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

上一代人的状况所产生的代际和跨代表观遗传效应可能会导致环境适应性和疾病易感性。以前在啮齿动物和人类模型中进行的研究表明,发育过程中异常暴露于甲状腺激素会影响后代的内分泌功能和甲状腺激素敏感性。由于印迹3型脱碘酶基因(Dio3)调节对甲状腺激素的敏感性,我们推测甲状腺激素过度暴露者的后代对该基因的表观遗传调节会发生改变。我们利用DIO3缺陷小鼠作为发育性甲状腺毒症的模型,研究了Dio3的总表达和等位基因表达以及后代的生长和内分泌表型。我们观察到,雄性和雌性发育过程中过度暴露于甲状腺激素会以组织特异性的方式改变基因完整的后代的Dio3总表达量和等位基因表达量。这与生长异常以及新生儿甲状腺激素和瘦素水平有关。后代小鼠还表现出 Dlk1-Dio3 印记域的分子异常,包括 Meg3 的甲基化增加和 Dlk1-Dio3 印记域其他基因的胎儿脑表达改变。最初在子宫内过度暴露于甲状腺激素的DIO3缺陷祖先的组织和生殖系中也观察到了这些分子异常。我们的研究结果提供了一种新的表观遗传自我记忆范例,通过这种范例,特定个体中的Dio3基因剂量及其与甲状腺激素的依赖性发育暴露会影响其自身在后代中的表达。这种在每一代中对Dio3表达进行表观遗传自我校正的机制可能有助于后代对发育生长和成年内分泌功能进行适应性编程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transgenerational epigenetic self-memory of Dio3 dosage is associated with Meg3 methylation and altered growth trajectories and neonatal hormones.

Intergenerational and transgenerational epigenetic effects resulting from conditions in previous generations can contribute to environmental adaptation as well as disease susceptibility. Previous studies in rodent and human models have shown that abnormal developmental exposure to thyroid hormone affects endocrine function and thyroid hormone sensitivity in later generations. Since the imprinted type 3 deiodinase gene (Dio3) regulates sensitivity to thyroid hormones, we hypothesize its epigenetic regulation is altered in descendants of thyroid hormone overexposed individuals. Using DIO3-deficient mice as a model of developmental thyrotoxicosis, we investigated Dio3 total and allelic expression and growth and endocrine phenotypes in descendants. We observed that male and female developmental overexposure to thyroid hormone altered total and allelic Dio3 expression in genetically intact descendants in a tissue-specific manner. This was associated with abnormal growth and neonatal levels of thyroid hormone and leptin. Descendant mice also exhibited molecular abnormalities in the Dlk1-Dio3 imprinted domain, including increased methylation in Meg3 and altered foetal brain expression of other genes of the Dlk1-Dio3 imprinted domain. These molecular abnormalities were also observed in the tissues and germ line of DIO3-deficient ancestors originally overexposed to thyroid hormone in utero. Our results provide a novel paradigm of epigenetic self-memory by which Dio3 gene dosage in a given individual, and its dependent developmental exposure to thyroid hormone, influences its own expression in future generations. This mechanism of epigenetic self-correction of Dio3 expression in each generation may be instrumental in descendants for their adaptive programming of developmental growth and adult endocrine function.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epigenetics
Epigenetics 生物-生化与分子生物学
CiteScore
6.80
自引率
2.70%
发文量
82
审稿时长
3-8 weeks
期刊介绍: Epigenetics publishes peer-reviewed original research and review articles that provide an unprecedented forum where epigenetic mechanisms and their role in diverse biological processes can be revealed, shared, and discussed. Epigenetics research studies heritable changes in gene expression caused by mechanisms others than the modification of the DNA sequence. Epigenetics therefore plays critical roles in a variety of biological systems, diseases, and disciplines. Topics of interest include (but are not limited to): DNA methylation Nucleosome positioning and modification Gene silencing Imprinting Nuclear reprogramming Chromatin remodeling Non-coding RNA Non-histone chromosomal elements Dosage compensation Nuclear organization Epigenetic therapy and diagnostics Nutrition and environmental epigenetics Cancer epigenetics Neuroepigenetics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信