{"title":"代谢物-微生物配对识别的交叉组学数据分析策略。","authors":"Tao Sun, Dongnan Sun, Junliang Kuang, Xiaowen Chao, Yihan Guo, Mengci Li, Tianlu Chen","doi":"10.1002/pmic.202400035","DOIUrl":null,"url":null,"abstract":"<p><p>Given the pivotal roles of metabolomics and microbiomics, numerous data mining approaches aim to uncover their intricate connections. However, the complex many-to-many associations between metabolome-microbiome profiles yield numerous statistically significant but biologically unvalidated candidates. To address these challenges, we introduce BiOFI, a strategic framework for identifying metabolome-microbiome correlation pairs (Bi-Omics). BiOFI employs a comprehensive scoring system, incorporating intergroup differences, effects on feature correlation networks, and organism abundance. Meanwhile, it establishes a built-in database of metabolite-microbe-KEGG functional pathway linking relationships. Furthermore, BiOFI can rank related feature pairs by combining importance scores and correlation strength. Validation on a dataset of cesarean-section infants confirms the strategy's validity and interpretability. The BiOFI R package is freely accessible at https://github.com/chentianlu/BiOFI.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cross-omics data analysis strategy for metabolite-microbe pair identification.\",\"authors\":\"Tao Sun, Dongnan Sun, Junliang Kuang, Xiaowen Chao, Yihan Guo, Mengci Li, Tianlu Chen\",\"doi\":\"10.1002/pmic.202400035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Given the pivotal roles of metabolomics and microbiomics, numerous data mining approaches aim to uncover their intricate connections. However, the complex many-to-many associations between metabolome-microbiome profiles yield numerous statistically significant but biologically unvalidated candidates. To address these challenges, we introduce BiOFI, a strategic framework for identifying metabolome-microbiome correlation pairs (Bi-Omics). BiOFI employs a comprehensive scoring system, incorporating intergroup differences, effects on feature correlation networks, and organism abundance. Meanwhile, it establishes a built-in database of metabolite-microbe-KEGG functional pathway linking relationships. Furthermore, BiOFI can rank related feature pairs by combining importance scores and correlation strength. Validation on a dataset of cesarean-section infants confirms the strategy's validity and interpretability. The BiOFI R package is freely accessible at https://github.com/chentianlu/BiOFI.</p>\",\"PeriodicalId\":224,\"journal\":{\"name\":\"Proteomics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/pmic.202400035\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/pmic.202400035","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
鉴于代谢组学和微生物组学的关键作用,许多数据挖掘方法都旨在揭示它们之间错综复杂的联系。然而,代谢组-微生物组图谱之间复杂的多对多关联产生了许多在统计学上有意义但在生物学上未经验证的候选者。为了应对这些挑战,我们引入了 BiOFI,这是一个用于识别代谢组-微生物组相关对(Bi-Omics)的战略框架。BiOFI 采用综合评分系统,将组间差异、对特征相关网络的影响以及生物丰度纳入其中。同时,它还建立了一个代谢物-微生物-KEGG 功能通路连接关系的内置数据库。此外,BiOFI 还能结合重要性得分和相关性强度对相关特征对进行排序。对剖腹产婴儿数据集的验证证实了该策略的有效性和可解释性。BiOFI R 软件包可在 https://github.com/chentianlu/BiOFI 免费获取。
A cross-omics data analysis strategy for metabolite-microbe pair identification.
Given the pivotal roles of metabolomics and microbiomics, numerous data mining approaches aim to uncover their intricate connections. However, the complex many-to-many associations between metabolome-microbiome profiles yield numerous statistically significant but biologically unvalidated candidates. To address these challenges, we introduce BiOFI, a strategic framework for identifying metabolome-microbiome correlation pairs (Bi-Omics). BiOFI employs a comprehensive scoring system, incorporating intergroup differences, effects on feature correlation networks, and organism abundance. Meanwhile, it establishes a built-in database of metabolite-microbe-KEGG functional pathway linking relationships. Furthermore, BiOFI can rank related feature pairs by combining importance scores and correlation strength. Validation on a dataset of cesarean-section infants confirms the strategy's validity and interpretability. The BiOFI R package is freely accessible at https://github.com/chentianlu/BiOFI.
期刊介绍:
PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.