Myongin Oh, Maximilian Shen, Ruibin Liu, Lidiya Stavitskaya, Jana Shen
{"title":"人μ-阿片受体配体内在活性的机器学习分类。","authors":"Myongin Oh, Maximilian Shen, Ruibin Liu, Lidiya Stavitskaya, Jana Shen","doi":"10.1021/acschemneuro.4c00212","DOIUrl":null,"url":null,"abstract":"<p><p>Opioids are small-molecule agonists of μ-opioid receptor (μOR), while reversal agents such as naloxone are antagonists of μOR. Here, we developed machine learning (ML) models to classify the intrinsic activities of ligands at the human μOR based on the SMILES strings and two-dimensional molecular descriptors. We first manually curated a database of 983 small molecules with measured <i>E</i><sub>max</sub> values at the human μOR. Analysis of the chemical space allowed identification of dominant scaffolds and structurally similar agonists and antagonists. Decision tree models and directed message passing neural networks (MPNNs) were then trained to classify agonistic and antagonistic ligands. The hold-out test AUCs (areas under the receiver operator curves) of the extra-tree (ET) and MPNN models are 91.5 ± 3.9% and 91.8 ± 4.4%, respectively. To overcome the challenge of a small data set, a student-teacher learning method called tritraining with disagreement was tested using an unlabeled data set comprised of 15,816 ligands of human, mouse, and rat μOR, κOR, and δOR. We found that the tritraining scheme was able to increase the hold-out AUC of MPNN models to as high as 95.7%. Our work demonstrates the feasibility of developing ML models to accurately predict the intrinsic activities of μOR ligands, even with limited data. We envisage potential applications of these models in evaluating uncharacterized substances for public safety risks and discovering new therapeutic agents to counteract opioid overdoses.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"2842-2852"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341632/pdf/","citationCount":"0","resultStr":"{\"title\":\"Machine Learned Classification of Ligand Intrinsic Activities at Human μ-Opioid Receptor.\",\"authors\":\"Myongin Oh, Maximilian Shen, Ruibin Liu, Lidiya Stavitskaya, Jana Shen\",\"doi\":\"10.1021/acschemneuro.4c00212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Opioids are small-molecule agonists of μ-opioid receptor (μOR), while reversal agents such as naloxone are antagonists of μOR. Here, we developed machine learning (ML) models to classify the intrinsic activities of ligands at the human μOR based on the SMILES strings and two-dimensional molecular descriptors. We first manually curated a database of 983 small molecules with measured <i>E</i><sub>max</sub> values at the human μOR. Analysis of the chemical space allowed identification of dominant scaffolds and structurally similar agonists and antagonists. Decision tree models and directed message passing neural networks (MPNNs) were then trained to classify agonistic and antagonistic ligands. The hold-out test AUCs (areas under the receiver operator curves) of the extra-tree (ET) and MPNN models are 91.5 ± 3.9% and 91.8 ± 4.4%, respectively. To overcome the challenge of a small data set, a student-teacher learning method called tritraining with disagreement was tested using an unlabeled data set comprised of 15,816 ligands of human, mouse, and rat μOR, κOR, and δOR. We found that the tritraining scheme was able to increase the hold-out AUC of MPNN models to as high as 95.7%. Our work demonstrates the feasibility of developing ML models to accurately predict the intrinsic activities of μOR ligands, even with limited data. We envisage potential applications of these models in evaluating uncharacterized substances for public safety risks and discovering new therapeutic agents to counteract opioid overdoses.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\" \",\"pages\":\"2842-2852\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341632/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.4c00212\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00212","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/11 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Machine Learned Classification of Ligand Intrinsic Activities at Human μ-Opioid Receptor.
Opioids are small-molecule agonists of μ-opioid receptor (μOR), while reversal agents such as naloxone are antagonists of μOR. Here, we developed machine learning (ML) models to classify the intrinsic activities of ligands at the human μOR based on the SMILES strings and two-dimensional molecular descriptors. We first manually curated a database of 983 small molecules with measured Emax values at the human μOR. Analysis of the chemical space allowed identification of dominant scaffolds and structurally similar agonists and antagonists. Decision tree models and directed message passing neural networks (MPNNs) were then trained to classify agonistic and antagonistic ligands. The hold-out test AUCs (areas under the receiver operator curves) of the extra-tree (ET) and MPNN models are 91.5 ± 3.9% and 91.8 ± 4.4%, respectively. To overcome the challenge of a small data set, a student-teacher learning method called tritraining with disagreement was tested using an unlabeled data set comprised of 15,816 ligands of human, mouse, and rat μOR, κOR, and δOR. We found that the tritraining scheme was able to increase the hold-out AUC of MPNN models to as high as 95.7%. Our work demonstrates the feasibility of developing ML models to accurately predict the intrinsic activities of μOR ligands, even with limited data. We envisage potential applications of these models in evaluating uncharacterized substances for public safety risks and discovering new therapeutic agents to counteract opioid overdoses.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research