具有对数耦合的静态均场博弈的 $$C^{1,\α }$$ 正则性

Tigran Bakaryan, Giuseppe Di Fazio, Diogo A. Gomes
{"title":"具有对数耦合的静态均场博弈的 $$C^{1,\\α }$$ 正则性","authors":"Tigran Bakaryan, Giuseppe Di Fazio, Diogo A. Gomes","doi":"10.1007/s00030-024-00976-x","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates stationary mean-field games (MFGs) on the torus with Lipschitz non-homogeneous diffusion and logarithmic-like couplings. The primary objective is to understand the existence of <span>\\(C^{1,\\alpha }\\)</span> solutions to address the research gap between low-regularity results for bounded and measurable diffusions and the smooth results modeled by the Laplacian. We use the Hopf-Cole transformation to convert the MFG system into a scalar elliptic equation. Then, we apply Morrey space methods to establish the existence and regularity of solutions. The introduction of Morrey space methods offers a novel approach to address regularity issues in the context of MFGs.\n</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$$C^{1,\\\\alpha }$$ regularity for stationary mean-field games with logarithmic coupling\",\"authors\":\"Tigran Bakaryan, Giuseppe Di Fazio, Diogo A. Gomes\",\"doi\":\"10.1007/s00030-024-00976-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates stationary mean-field games (MFGs) on the torus with Lipschitz non-homogeneous diffusion and logarithmic-like couplings. The primary objective is to understand the existence of <span>\\\\(C^{1,\\\\alpha }\\\\)</span> solutions to address the research gap between low-regularity results for bounded and measurable diffusions and the smooth results modeled by the Laplacian. We use the Hopf-Cole transformation to convert the MFG system into a scalar elliptic equation. Then, we apply Morrey space methods to establish the existence and regularity of solutions. The introduction of Morrey space methods offers a novel approach to address regularity issues in the context of MFGs.\\n</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00976-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00976-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有 Lipschitz 非均质扩散和类对数耦合的环上静态均场博弈(MFGs)。主要目的是理解 \(C^{1,\alpha }\) 解的存在,以解决有界和可测扩散的低规则性结果与拉普拉卡模型的平滑结果之间的研究空白。我们使用 Hopf-Cole 变换将 MFG 系统转换为标量椭圆方程。然后,我们应用 Morrey 空间方法确定解的存在性和正则性。Morrey 空间方法的引入为解决 MFG 的正则性问题提供了一种新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$$C^{1,\alpha }$$ regularity for stationary mean-field games with logarithmic coupling

This paper investigates stationary mean-field games (MFGs) on the torus with Lipschitz non-homogeneous diffusion and logarithmic-like couplings. The primary objective is to understand the existence of \(C^{1,\alpha }\) solutions to address the research gap between low-regularity results for bounded and measurable diffusions and the smooth results modeled by the Laplacian. We use the Hopf-Cole transformation to convert the MFG system into a scalar elliptic equation. Then, we apply Morrey space methods to establish the existence and regularity of solutions. The introduction of Morrey space methods offers a novel approach to address regularity issues in the context of MFGs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信