晶体学点群上的群编码

IF 2.6 3区 数学
Yanyan Gao, Xiaomeng Zhu
{"title":"晶体学点群上的群编码","authors":"Yanyan Gao, Xiaomeng Zhu","doi":"10.1007/s40314-024-02810-7","DOIUrl":null,"url":null,"abstract":"<p>Consider a finite field <span>\\({\\mathbb {F}}_{q}\\)</span> with characteristic <i>p</i>, where <i>G</i> is a crystallographic point group satisfying <span>\\(p \\not \\mid |G|\\)</span> and <span>\\(q=p^n\\)</span>. In this paper, we propose studying group codes in the crystallographic point group algebras <span>\\({\\mathbb {F}}_{q}G\\)</span> for the point groups <span>\\(C_{2h}\\)</span>, <span>\\(C_{6v}\\)</span>, and <span>\\(D_{6h}\\)</span>. We compute the unique (linear and nonlinear) idempotents of <span>\\({\\mathbb {F}}_{q}G\\)</span> that correspond to the characters of the crystallographic point groups. These idempotents play a crucial role in characterizing the properties of the group codes. Based on the above results, we characterize the minimum distances and dimensions of the group codes. This provides valuable information about the error-correcting capabilities and the amount of information that can be transmitted through these codes. Furthermore, we construct MDS (Maximum Distance Separable) group codes and almost MDS group codes.</p>","PeriodicalId":51278,"journal":{"name":"Computational and Applied Mathematics","volume":"2010 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Group codes over crystallographic point groups\",\"authors\":\"Yanyan Gao, Xiaomeng Zhu\",\"doi\":\"10.1007/s40314-024-02810-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Consider a finite field <span>\\\\({\\\\mathbb {F}}_{q}\\\\)</span> with characteristic <i>p</i>, where <i>G</i> is a crystallographic point group satisfying <span>\\\\(p \\\\not \\\\mid |G|\\\\)</span> and <span>\\\\(q=p^n\\\\)</span>. In this paper, we propose studying group codes in the crystallographic point group algebras <span>\\\\({\\\\mathbb {F}}_{q}G\\\\)</span> for the point groups <span>\\\\(C_{2h}\\\\)</span>, <span>\\\\(C_{6v}\\\\)</span>, and <span>\\\\(D_{6h}\\\\)</span>. We compute the unique (linear and nonlinear) idempotents of <span>\\\\({\\\\mathbb {F}}_{q}G\\\\)</span> that correspond to the characters of the crystallographic point groups. These idempotents play a crucial role in characterizing the properties of the group codes. Based on the above results, we characterize the minimum distances and dimensions of the group codes. This provides valuable information about the error-correcting capabilities and the amount of information that can be transmitted through these codes. Furthermore, we construct MDS (Maximum Distance Separable) group codes and almost MDS group codes.</p>\",\"PeriodicalId\":51278,\"journal\":{\"name\":\"Computational and Applied Mathematics\",\"volume\":\"2010 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s40314-024-02810-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s40314-024-02810-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑一个特征为 p 的有限域 \({\mathbb {F}}_{q}\) ,其中 G 是一个满足 \(p \not \mid |G|\) 和 \(q=p^n\) 的结晶点群。在本文中,我们提出在晶体学点群代数中研究点群 \(C_{2h}\)、\(C_{6v}\)和\(D_{6h}\)的群编码。我们计算了 \({\mathbb {F}}_{q}G\) 的唯一(线性和非线性)幂函数,这些幂函数与晶体学点群的特征相对应。这些幂等子在描述群编码的性质时起着至关重要的作用。基于上述结果,我们确定了群码的最小距离和维数。这提供了有关纠错能力和通过这些编码可传输信息量的宝贵信息。此外,我们还构建了 MDS(最大距离可分离)分组码和近似 MDS 分组码。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Group codes over crystallographic point groups

Group codes over crystallographic point groups

Consider a finite field \({\mathbb {F}}_{q}\) with characteristic p, where G is a crystallographic point group satisfying \(p \not \mid |G|\) and \(q=p^n\). In this paper, we propose studying group codes in the crystallographic point group algebras \({\mathbb {F}}_{q}G\) for the point groups \(C_{2h}\), \(C_{6v}\), and \(D_{6h}\). We compute the unique (linear and nonlinear) idempotents of \({\mathbb {F}}_{q}G\) that correspond to the characters of the crystallographic point groups. These idempotents play a crucial role in characterizing the properties of the group codes. Based on the above results, we characterize the minimum distances and dimensions of the group codes. This provides valuable information about the error-correcting capabilities and the amount of information that can be transmitted through these codes. Furthermore, we construct MDS (Maximum Distance Separable) group codes and almost MDS group codes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
11.50%
发文量
352
期刊介绍: Computational & Applied Mathematics began to be published in 1981. This journal was conceived as the main scientific publication of SBMAC (Brazilian Society of Computational and Applied Mathematics). The objective of the journal is the publication of original research in Applied and Computational Mathematics, with interfaces in Physics, Engineering, Chemistry, Biology, Operations Research, Statistics, Social Sciences and Economy. The journal has the usual quality standards of scientific international journals and we aim high level of contributions in terms of originality, depth and relevance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信