由随机相位方波信号调制噪声和乘法噪声驱动的双稳态系统的共振行为

IF 1.9 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Pramana Pub Date : 2024-07-11 DOI:10.1007/s12043-024-02807-1
Feng Guo, Cheng-Yin Zhu, Qiang-Ming Cai, Jian-Wei Wang
{"title":"由随机相位方波信号调制噪声和乘法噪声驱动的双稳态系统的共振行为","authors":"Feng Guo,&nbsp;Cheng-Yin Zhu,&nbsp;Qiang-Ming Cai,&nbsp;Jian-Wei Wang","doi":"10.1007/s12043-024-02807-1","DOIUrl":null,"url":null,"abstract":"<div><p>The stochastic resonance (SR) phenomenon for a bistable system subject to signal-modulated noise and to multiplicative and additive noise is investigated. The signal is modelled as a random-phase asymmetric square-wave one. Based on adiabatic approximation condition and two-state theory, the system output signal-to-noise ratio (SNR) is deduced. It is found that double SR phenomenon occurs when the SNR varies with the asymmetry of the square-wave signal. One resonance peak appears when the SNR changes with the amplitude of the square-wave signal. Traditional SR can be observed on the curves of the SNRs vs. the strength of the signal-modulated noise and vs. the intensities of the multiplicative and additive noise. The non-monotonous dependence of the SNR on the system parameter is discussed.</p></div>","PeriodicalId":743,"journal":{"name":"Pramana","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Resonance behaviour for a bistable system driven by random-phase square-wave signal-modulated noise and multiplicative noise\",\"authors\":\"Feng Guo,&nbsp;Cheng-Yin Zhu,&nbsp;Qiang-Ming Cai,&nbsp;Jian-Wei Wang\",\"doi\":\"10.1007/s12043-024-02807-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The stochastic resonance (SR) phenomenon for a bistable system subject to signal-modulated noise and to multiplicative and additive noise is investigated. The signal is modelled as a random-phase asymmetric square-wave one. Based on adiabatic approximation condition and two-state theory, the system output signal-to-noise ratio (SNR) is deduced. It is found that double SR phenomenon occurs when the SNR varies with the asymmetry of the square-wave signal. One resonance peak appears when the SNR changes with the amplitude of the square-wave signal. Traditional SR can be observed on the curves of the SNRs vs. the strength of the signal-modulated noise and vs. the intensities of the multiplicative and additive noise. The non-monotonous dependence of the SNR on the system parameter is discussed.</p></div>\",\"PeriodicalId\":743,\"journal\":{\"name\":\"Pramana\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pramana\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12043-024-02807-1\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pramana","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s12043-024-02807-1","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

研究了双稳态系统在信号调制噪声以及乘法和加法噪声作用下的随机共振(SR)现象。信号被模拟为随机相位不对称方波信号。根据绝热近似条件和双态理论,推导出了系统输出信噪比(SNR)。结果发现,当信噪比随方波信号的不对称而变化时,会出现双 SR 现象。当信噪比随方波信号的振幅变化时,会出现一个共振峰。在信噪比与信号调制噪声强度的关系曲线以及与乘法噪声和加法噪声强度的关系曲线上,可以观察到传统的 SR。讨论了信噪比与系统参数的非单调依赖关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Resonance behaviour for a bistable system driven by random-phase square-wave signal-modulated noise and multiplicative noise

Resonance behaviour for a bistable system driven by random-phase square-wave signal-modulated noise and multiplicative noise

Resonance behaviour for a bistable system driven by random-phase square-wave signal-modulated noise and multiplicative noise

The stochastic resonance (SR) phenomenon for a bistable system subject to signal-modulated noise and to multiplicative and additive noise is investigated. The signal is modelled as a random-phase asymmetric square-wave one. Based on adiabatic approximation condition and two-state theory, the system output signal-to-noise ratio (SNR) is deduced. It is found that double SR phenomenon occurs when the SNR varies with the asymmetry of the square-wave signal. One resonance peak appears when the SNR changes with the amplitude of the square-wave signal. Traditional SR can be observed on the curves of the SNRs vs. the strength of the signal-modulated noise and vs. the intensities of the multiplicative and additive noise. The non-monotonous dependence of the SNR on the system parameter is discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pramana
Pramana 物理-物理:综合
CiteScore
3.60
自引率
7.10%
发文量
206
审稿时长
3 months
期刊介绍: Pramana - Journal of Physics is a monthly research journal in English published by the Indian Academy of Sciences in collaboration with Indian National Science Academy and Indian Physics Association. The journal publishes refereed papers covering current research in Physics, both original contributions - research papers, brief reports or rapid communications - and invited reviews. Pramana also publishes special issues devoted to advances in specific areas of Physics and proceedings of select high quality conferences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信