论更强形式的扩张性

Shital H. Joshi, Ekta Shah
{"title":"论更强形式的扩张性","authors":"Shital H. Joshi, Ekta Shah","doi":"arxiv-2407.07549","DOIUrl":null,"url":null,"abstract":"We define the concept of stronger forms of positively expansive map and name\nit as $p \\:\\mathscr{F}-$expansive maps. Here $\\mathscr{F}$ is a family of\nsubsets of $\\mathbb{N}$. Examples of positively thick expansive and positively\nsyndetic expansive maps are constructed here. Also, we obtain conditions under\nwhich a positively expansive map is positively co--finite expansive and\npositively syndetic expansive maps. Further, we study several properties of $p\n\\:\\mathscr{F}-$expansive maps. A characterization of $p\n\\:\\mathscr{F}-$expansive maps in terms of $p \\:\\mathscr{F}^*-$generator is\nobtained. Here $p \\:\\mathscr{F}^*$ is dual of $\\mathscr{F}$. Considering\n$(\\mathbb{Z},+)$ as a semigroup, we study $\\mathscr{F}-$expansive\nhomeomorphism, where $\\mathscr{F}$ is a family of subsets of $\\mathbb{Z}\n\\setminus \\{0\\}$. We show that there does not exists an expansive homeomorphism\non a compact metric space which is $\\mathscr{F}_s-$expansive. Also, we study\nrelation between $\\mathscr{F}-$expansivity of $f$ and the shift map $\\sigma_f$\non the inverse limit space.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Stronger Forms of Expansivity\",\"authors\":\"Shital H. Joshi, Ekta Shah\",\"doi\":\"arxiv-2407.07549\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We define the concept of stronger forms of positively expansive map and name\\nit as $p \\\\:\\\\mathscr{F}-$expansive maps. Here $\\\\mathscr{F}$ is a family of\\nsubsets of $\\\\mathbb{N}$. Examples of positively thick expansive and positively\\nsyndetic expansive maps are constructed here. Also, we obtain conditions under\\nwhich a positively expansive map is positively co--finite expansive and\\npositively syndetic expansive maps. Further, we study several properties of $p\\n\\\\:\\\\mathscr{F}-$expansive maps. A characterization of $p\\n\\\\:\\\\mathscr{F}-$expansive maps in terms of $p \\\\:\\\\mathscr{F}^*-$generator is\\nobtained. Here $p \\\\:\\\\mathscr{F}^*$ is dual of $\\\\mathscr{F}$. Considering\\n$(\\\\mathbb{Z},+)$ as a semigroup, we study $\\\\mathscr{F}-$expansive\\nhomeomorphism, where $\\\\mathscr{F}$ is a family of subsets of $\\\\mathbb{Z}\\n\\\\setminus \\\\{0\\\\}$. We show that there does not exists an expansive homeomorphism\\non a compact metric space which is $\\\\mathscr{F}_s-$expansive. Also, we study\\nrelation between $\\\\mathscr{F}-$expansivity of $f$ and the shift map $\\\\sigma_f$\\non the inverse limit space.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.07549\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们定义了正扩张映射的更强形式的概念,并将其命名为 $p \:\mathscr{F}-$expansive maps。这里的 $\mathscr{F}$ 是 $\mathbb{N}$ 的子集族。我们在此构建了正厚扩张映射和正矢扩张映射的实例。同时,我们还得到了正广延性映射是正共无限广延性映射和正联合广延性映射的条件。此外,我们还研究了$p\:\mathscr{F}-$扩张映射的几个性质。我们得到了$p \:\mathscr{F}-$p 展开映射在$p \:\mathscr{F}^*-$生成器方面的特征。这里 $p (:\mathscr{F}^*$ 是 $\mathscr{F}$ 的对偶。考虑到$(\mathbb{Z},+)$是一个半群,我们研究了$\mathscr{F}-$扩展同构,其中$\mathscr{F}$是$\mathbb{Z}setminus \{0\}$的子集族。我们证明在紧凑度量空间中不存在$\mathscr{F}_s-$扩张性的同构。此外,我们还研究了 $f$ 的 $\mathscr{F}-$ 展开性与逆极限空间上的移位映射 $\sigma_f$ 之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Stronger Forms of Expansivity
We define the concept of stronger forms of positively expansive map and name it as $p \:\mathscr{F}-$expansive maps. Here $\mathscr{F}$ is a family of subsets of $\mathbb{N}$. Examples of positively thick expansive and positively syndetic expansive maps are constructed here. Also, we obtain conditions under which a positively expansive map is positively co--finite expansive and positively syndetic expansive maps. Further, we study several properties of $p \:\mathscr{F}-$expansive maps. A characterization of $p \:\mathscr{F}-$expansive maps in terms of $p \:\mathscr{F}^*-$generator is obtained. Here $p \:\mathscr{F}^*$ is dual of $\mathscr{F}$. Considering $(\mathbb{Z},+)$ as a semigroup, we study $\mathscr{F}-$expansive homeomorphism, where $\mathscr{F}$ is a family of subsets of $\mathbb{Z} \setminus \{0\}$. We show that there does not exists an expansive homeomorphism on a compact metric space which is $\mathscr{F}_s-$expansive. Also, we study relation between $\mathscr{F}-$expansivity of $f$ and the shift map $\sigma_f$ on the inverse limit space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信