两个图形之间的方钉

Joshua Evan Greene, Andrew Lobb
{"title":"两个图形之间的方钉","authors":"Joshua Evan Greene, Andrew Lobb","doi":"arxiv-2407.07798","DOIUrl":null,"url":null,"abstract":"We show that there always exists an inscribed square in a Jordan curve given\nas the union of two graphs of functions of Lipschitz constant less than $1 +\n\\sqrt{2}$. We are motivated by Tao's result that there exists such a square in\nthe case of Lipschitz constant less than $1$. In the case of Lipschitz constant\n$1$, we show that the Jordan curve inscribes rectangles of every similarity\nclass. Our approach involves analysing the change in the spectral invariants of\nthe Jordan Floer homology under perturbations of the Jordan curve.","PeriodicalId":501155,"journal":{"name":"arXiv - MATH - Symplectic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Square pegs between two graphs\",\"authors\":\"Joshua Evan Greene, Andrew Lobb\",\"doi\":\"arxiv-2407.07798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that there always exists an inscribed square in a Jordan curve given\\nas the union of two graphs of functions of Lipschitz constant less than $1 +\\n\\\\sqrt{2}$. We are motivated by Tao's result that there exists such a square in\\nthe case of Lipschitz constant less than $1$. In the case of Lipschitz constant\\n$1$, we show that the Jordan curve inscribes rectangles of every similarity\\nclass. Our approach involves analysing the change in the spectral invariants of\\nthe Jordan Floer homology under perturbations of the Jordan curve.\",\"PeriodicalId\":501155,\"journal\":{\"name\":\"arXiv - MATH - Symplectic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Symplectic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.07798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Symplectic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,在立普齐兹常数小于 1 +\sqrt{2}$ 的两个函数图的结合处的乔丹曲线中,总是存在一个内切正方形。我们的研究动机来自于陶的结果,即在 Lipschitz 常数小于 1$ 的情况下存在这样一个正方形。在 Lipschitz 常数为 1$ 的情况下,我们证明乔丹曲线刻画了每个相似性类别的矩形。我们的方法包括分析乔丹浮点同调的谱不变式在乔丹曲线扰动下的变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Square pegs between two graphs
We show that there always exists an inscribed square in a Jordan curve given as the union of two graphs of functions of Lipschitz constant less than $1 + \sqrt{2}$. We are motivated by Tao's result that there exists such a square in the case of Lipschitz constant less than $1$. In the case of Lipschitz constant $1$, we show that the Jordan curve inscribes rectangles of every similarity class. Our approach involves analysing the change in the spectral invariants of the Jordan Floer homology under perturbations of the Jordan curve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信