{"title":"利用集合再预测调查欧洲热浪来临的中期可预测性与天气状况的关系","authors":"Alexander Lemburg, Andreas H. Fink","doi":"10.1002/qj.4801","DOIUrl":null,"url":null,"abstract":"In this study, the medium‐range predictability of heatwave (HW) onsets in four midlatitude European regions is investigated statistically with the help of ensemble reforecasts for the period 2001–2018. The concept of Euro‐Atlantic weather regimes is adopted to characterise HWs (about 50 in each region) and to study whether forecast skill may depend on the large‐scale dynamical setup. HW onsets over the British Isles and Scandinavia are mainly associated with Scandinavian and European blocking regimes, whereas the “no regime” case is observed more frequently for Central Europe. Stratified by weather regime, the predictability of heatwave onsets is then studied by means of a multiple metric‐based analysis of European Centre for Medium‐Range Weather Forecasts (ECMWF) and Global Ensemble Forecast System Version 12 (GEFSv12) ensemble reforecasts. For two of the regions considered, Central Europe and the British Isles, a conclusive picture is obtained: medium‐range predictive skill is significantly higher for HW onsets associated with Scandinavian or European blocking compared with cases with no pronounced regime. This skill advantage mostly concerns the large‐scale flow and, to some extent, 850‐hPa temperatures, but is generally not reflected in the correct prediction of near‐surface temperatures. Finally, we investigate for two regions how exceptionally good or poor forecasts are related to the atmospheric state during or shortly after forecast initialisation. At 10 days lead time, poor large‐scale flow predictive skill for Central European HW onsets is linked to anomalously high baroclinicity further upstream and an intensified North Atlantic jet stream, whereas good forecasts on average feature an initial state close to climatology. Forecast skill for near‐surface temperatures is not affected by such dynamical precursors, but rather by pre‐existing soil‐moisture anomalies. For the British region, exceptionally good forecasts of both large‐scale flow and near‐surface temperatures are associated with an already established continental blocking. In contrast to Central Europe, pre‐existing soil‐moisture anomalies play less of a role there.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the medium‐range predictability of European heatwave onsets in relation to weather regimes using ensemble reforecasts\",\"authors\":\"Alexander Lemburg, Andreas H. Fink\",\"doi\":\"10.1002/qj.4801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the medium‐range predictability of heatwave (HW) onsets in four midlatitude European regions is investigated statistically with the help of ensemble reforecasts for the period 2001–2018. The concept of Euro‐Atlantic weather regimes is adopted to characterise HWs (about 50 in each region) and to study whether forecast skill may depend on the large‐scale dynamical setup. HW onsets over the British Isles and Scandinavia are mainly associated with Scandinavian and European blocking regimes, whereas the “no regime” case is observed more frequently for Central Europe. Stratified by weather regime, the predictability of heatwave onsets is then studied by means of a multiple metric‐based analysis of European Centre for Medium‐Range Weather Forecasts (ECMWF) and Global Ensemble Forecast System Version 12 (GEFSv12) ensemble reforecasts. For two of the regions considered, Central Europe and the British Isles, a conclusive picture is obtained: medium‐range predictive skill is significantly higher for HW onsets associated with Scandinavian or European blocking compared with cases with no pronounced regime. This skill advantage mostly concerns the large‐scale flow and, to some extent, 850‐hPa temperatures, but is generally not reflected in the correct prediction of near‐surface temperatures. Finally, we investigate for two regions how exceptionally good or poor forecasts are related to the atmospheric state during or shortly after forecast initialisation. At 10 days lead time, poor large‐scale flow predictive skill for Central European HW onsets is linked to anomalously high baroclinicity further upstream and an intensified North Atlantic jet stream, whereas good forecasts on average feature an initial state close to climatology. Forecast skill for near‐surface temperatures is not affected by such dynamical precursors, but rather by pre‐existing soil‐moisture anomalies. For the British region, exceptionally good forecasts of both large‐scale flow and near‐surface temperatures are associated with an already established continental blocking. In contrast to Central Europe, pre‐existing soil‐moisture anomalies play less of a role there.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4801\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4801","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Investigating the medium‐range predictability of European heatwave onsets in relation to weather regimes using ensemble reforecasts
In this study, the medium‐range predictability of heatwave (HW) onsets in four midlatitude European regions is investigated statistically with the help of ensemble reforecasts for the period 2001–2018. The concept of Euro‐Atlantic weather regimes is adopted to characterise HWs (about 50 in each region) and to study whether forecast skill may depend on the large‐scale dynamical setup. HW onsets over the British Isles and Scandinavia are mainly associated with Scandinavian and European blocking regimes, whereas the “no regime” case is observed more frequently for Central Europe. Stratified by weather regime, the predictability of heatwave onsets is then studied by means of a multiple metric‐based analysis of European Centre for Medium‐Range Weather Forecasts (ECMWF) and Global Ensemble Forecast System Version 12 (GEFSv12) ensemble reforecasts. For two of the regions considered, Central Europe and the British Isles, a conclusive picture is obtained: medium‐range predictive skill is significantly higher for HW onsets associated with Scandinavian or European blocking compared with cases with no pronounced regime. This skill advantage mostly concerns the large‐scale flow and, to some extent, 850‐hPa temperatures, but is generally not reflected in the correct prediction of near‐surface temperatures. Finally, we investigate for two regions how exceptionally good or poor forecasts are related to the atmospheric state during or shortly after forecast initialisation. At 10 days lead time, poor large‐scale flow predictive skill for Central European HW onsets is linked to anomalously high baroclinicity further upstream and an intensified North Atlantic jet stream, whereas good forecasts on average feature an initial state close to climatology. Forecast skill for near‐surface temperatures is not affected by such dynamical precursors, but rather by pre‐existing soil‐moisture anomalies. For the British region, exceptionally good forecasts of both large‐scale flow and near‐surface temperatures are associated with an already established continental blocking. In contrast to Central Europe, pre‐existing soil‐moisture anomalies play less of a role there.
期刊介绍:
The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues.
The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.