将群嵌入有界非循环群

Fan Wu, Xiaolei Wu, Mengfei Zhao, Zixiang Zhou
{"title":"将群嵌入有界非循环群","authors":"Fan Wu, Xiaolei Wu, Mengfei Zhao, Zixiang Zhou","doi":"arxiv-2407.07703","DOIUrl":null,"url":null,"abstract":"We show that the labeled Thompson groups and the twisted Brin--Thompson\ngroups are boundedly acyclic. This allows us to prove several new embedding\nresults for groups. First, every group of type $F_n$ embeds quasi-isometrically\ninto a boundedly acyclic group of type $F_n$ that has no proper finite index\nsubgroups. This improves a result of Bridson \\cite{Br98} and a theorem of\nFournier-Facio--L\\\"oh--Moraschini \\cite[Theorem 2]{FFCM21}. Second, every group\nof type $F_n$ embeds quasi-isometrically into a $5$-uniformly perfect group of\ntype $F_n$. Third, using Belk--Zaremsky's construction of twisted\nBrin--Thompson groups, we show that every finitely generated group embeds\nquasi-isometrically into a finitely generated boundedly acyclic simple group.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedding groups into boundedly acyclic groups\",\"authors\":\"Fan Wu, Xiaolei Wu, Mengfei Zhao, Zixiang Zhou\",\"doi\":\"arxiv-2407.07703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the labeled Thompson groups and the twisted Brin--Thompson\\ngroups are boundedly acyclic. This allows us to prove several new embedding\\nresults for groups. First, every group of type $F_n$ embeds quasi-isometrically\\ninto a boundedly acyclic group of type $F_n$ that has no proper finite index\\nsubgroups. This improves a result of Bridson \\\\cite{Br98} and a theorem of\\nFournier-Facio--L\\\\\\\"oh--Moraschini \\\\cite[Theorem 2]{FFCM21}. Second, every group\\nof type $F_n$ embeds quasi-isometrically into a $5$-uniformly perfect group of\\ntype $F_n$. Third, using Belk--Zaremsky's construction of twisted\\nBrin--Thompson groups, we show that every finitely generated group embeds\\nquasi-isometrically into a finitely generated boundedly acyclic simple group.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.07703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了带标记的汤普森群和扭曲的布林-汤普森群是有界非循环的。这使我们能够证明几个新的群嵌入结果。首先,每一个 $F_n$ 类型的群都准近似地嵌入到一个没有适当有限索引子群的 $F_n$ 类型的有界无循环群中。这改进了布里奇森(Bridson)的一个结果(cite{Br98})和福尼尔-法奇奥-莱奥-莫拉斯奇尼(Fournier-Facio-L "oh-Moraschini)的一个定理(cite[定理2]{FFCM21})。第二,每一个 $F_n$ 类型的群都准等距地嵌入到一个 $F_n$ 类型的 $5$均匀完美群中。第三,利用贝尔克--扎雷姆斯基对扭曲布林--汤普森群的构造,我们证明了每个有限生成的群都准近似地嵌入到一个有限生成的有界无环简单群中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding groups into boundedly acyclic groups
We show that the labeled Thompson groups and the twisted Brin--Thompson groups are boundedly acyclic. This allows us to prove several new embedding results for groups. First, every group of type $F_n$ embeds quasi-isometrically into a boundedly acyclic group of type $F_n$ that has no proper finite index subgroups. This improves a result of Bridson \cite{Br98} and a theorem of Fournier-Facio--L\"oh--Moraschini \cite[Theorem 2]{FFCM21}. Second, every group of type $F_n$ embeds quasi-isometrically into a $5$-uniformly perfect group of type $F_n$. Third, using Belk--Zaremsky's construction of twisted Brin--Thompson groups, we show that every finitely generated group embeds quasi-isometrically into a finitely generated boundedly acyclic simple group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信