观察电路中的克莱因瓶四极拓扑绝缘体

Xizhou Shen, Keyu Pan, Xiumei Wang, Xingping Zhou
{"title":"观察电路中的克莱因瓶四极拓扑绝缘体","authors":"Xizhou Shen, Keyu Pan, Xiumei Wang, Xingping Zhou","doi":"arxiv-2407.07470","DOIUrl":null,"url":null,"abstract":"The Klein bottle Benalcazar-Bernevig-Hughes (BBH) insulator phase plays a\npivotal role in understanding higher-order topological phases. The insulator\nphase is characterized by a unique feature: a nonsymmorphic glide symmetry that\nexists within momentum space, rather than real space. This characteristic\ntransforms the Brillouin zone's fundamental domain into a structure of Klein\nbottle. Here, we report an observation of a Klein bottle topoelectrical model\nunder gauge fields. To provide a comprehensive understanding of the different\ncorner distributions of odd and even unit cells, we present theoretical\ncalculations and demonstrate that the symmetry properties significantly affect\nthe topological nature. These theoretical predictions are confirmed by\nexperimental results, which demonstrate the practical feasibility of such\ntopological configurations in electronic circuits. Our work establishes a vital\nconnection between the realms of condensed matter physics and circuit systems,\nthereby paving a pathway for investigating exotic condensed matter physics.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observation of Klein bottle quadrupole topological insulators in electric circuits\",\"authors\":\"Xizhou Shen, Keyu Pan, Xiumei Wang, Xingping Zhou\",\"doi\":\"arxiv-2407.07470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Klein bottle Benalcazar-Bernevig-Hughes (BBH) insulator phase plays a\\npivotal role in understanding higher-order topological phases. The insulator\\nphase is characterized by a unique feature: a nonsymmorphic glide symmetry that\\nexists within momentum space, rather than real space. This characteristic\\ntransforms the Brillouin zone's fundamental domain into a structure of Klein\\nbottle. Here, we report an observation of a Klein bottle topoelectrical model\\nunder gauge fields. To provide a comprehensive understanding of the different\\ncorner distributions of odd and even unit cells, we present theoretical\\ncalculations and demonstrate that the symmetry properties significantly affect\\nthe topological nature. These theoretical predictions are confirmed by\\nexperimental results, which demonstrate the practical feasibility of such\\ntopological configurations in electronic circuits. Our work establishes a vital\\nconnection between the realms of condensed matter physics and circuit systems,\\nthereby paving a pathway for investigating exotic condensed matter physics.\",\"PeriodicalId\":501211,\"journal\":{\"name\":\"arXiv - PHYS - Other Condensed Matter\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Other Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.07470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.07470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

克莱因瓶贝纳尔卡萨-贝内维格-休斯(BBH)绝缘体相在理解高阶拓扑相方面起着举足轻重的作用。该绝缘体相具有一个独特的特征:存在于动量空间而不是实空间的非非晶滑行对称性。这一特征将布里渊区的基本域转化为克莱因瓶结构。在此,我们报告了对规量场下电模型克莱因瓶的观测。为了全面理解奇数和偶数单元格的不同角分布,我们进行了理论计算,并证明对称性显著影响拓扑性质。实验结果证实了这些理论预测,证明了这种拓扑结构在电子电路中的实际可行性。我们的工作在凝聚态物理和电路系统之间建立了重要的联系,从而为研究奇异的凝聚态物理铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Observation of Klein bottle quadrupole topological insulators in electric circuits
The Klein bottle Benalcazar-Bernevig-Hughes (BBH) insulator phase plays a pivotal role in understanding higher-order topological phases. The insulator phase is characterized by a unique feature: a nonsymmorphic glide symmetry that exists within momentum space, rather than real space. This characteristic transforms the Brillouin zone's fundamental domain into a structure of Klein bottle. Here, we report an observation of a Klein bottle topoelectrical model under gauge fields. To provide a comprehensive understanding of the different corner distributions of odd and even unit cells, we present theoretical calculations and demonstrate that the symmetry properties significantly affect the topological nature. These theoretical predictions are confirmed by experimental results, which demonstrate the practical feasibility of such topological configurations in electronic circuits. Our work establishes a vital connection between the realms of condensed matter physics and circuit systems, thereby paving a pathway for investigating exotic condensed matter physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信