{"title":"基于深度学习的多样性个性化和多目标优化的多方利益相关者推荐系统,用于在相互竞争的偏好之间进行权衡","authors":"Rahul Shrivastava, Dilip Singh Sisodia, Naresh Kumar Nagwani","doi":"10.1108/k-02-2024-0344","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The Multi-Stakeholder Recommendation System learns consumer and producer preferences to make fair and balanced recommendations. Exclusive consumer-focused studies have improved the recommendation accuracy but lack in addressing producers' priorities for promoting their diverse items to target consumers, resulting in minimal utility gain for producers. These techniques also neglect latent and implicit stakeholders' preferences across item categories. Hence, this study proposes a personalized diversity-based optimized multi-stakeholder recommendation system by developing the deep learning-based diversity personalization model and establishing the trade-off relationship among stakeholders.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>The proposed methodology develops the deep autoencoder-based diversity personalization model to investigate the producers' latent interest in diversity. Next, this work builds the personalized diversity-based objective function by evaluating the diversity distribution of producers' preferences in different item categories. Next, this work builds the multi-stakeholder, multi-objective evolutionary algorithm to establish the accuracy-diversity trade-off among stakeholders.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The experimental and evaluation results over the Movie Lens 100K and 1M datasets demonstrate that the proposed models achieve the minimum average improvement of 40.81 and 32.67% over producers' utility and maximum improvement of 7.74 and 9.75% over the consumers' utility and successfully deliver the trade-off recommendations.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>The proposed algorithm for measuring and personalizing producers' diversity-based preferences improves producers' exposure and reach to various users. Additionally, the trade-off recommendation solution generated by the proposed model ensures a balanced enhancement in both consumer and producer utilities.</p><!--/ Abstract__block -->","PeriodicalId":49930,"journal":{"name":"Kybernetes","volume":"37 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-stakeholder recommendations system with deep learning-based diversity personalization and multi-objective optimization for establishing trade-off among competing preferences\",\"authors\":\"Rahul Shrivastava, Dilip Singh Sisodia, Naresh Kumar Nagwani\",\"doi\":\"10.1108/k-02-2024-0344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The Multi-Stakeholder Recommendation System learns consumer and producer preferences to make fair and balanced recommendations. Exclusive consumer-focused studies have improved the recommendation accuracy but lack in addressing producers' priorities for promoting their diverse items to target consumers, resulting in minimal utility gain for producers. These techniques also neglect latent and implicit stakeholders' preferences across item categories. Hence, this study proposes a personalized diversity-based optimized multi-stakeholder recommendation system by developing the deep learning-based diversity personalization model and establishing the trade-off relationship among stakeholders.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>The proposed methodology develops the deep autoencoder-based diversity personalization model to investigate the producers' latent interest in diversity. Next, this work builds the personalized diversity-based objective function by evaluating the diversity distribution of producers' preferences in different item categories. Next, this work builds the multi-stakeholder, multi-objective evolutionary algorithm to establish the accuracy-diversity trade-off among stakeholders.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The experimental and evaluation results over the Movie Lens 100K and 1M datasets demonstrate that the proposed models achieve the minimum average improvement of 40.81 and 32.67% over producers' utility and maximum improvement of 7.74 and 9.75% over the consumers' utility and successfully deliver the trade-off recommendations.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>The proposed algorithm for measuring and personalizing producers' diversity-based preferences improves producers' exposure and reach to various users. Additionally, the trade-off recommendation solution generated by the proposed model ensures a balanced enhancement in both consumer and producer utilities.</p><!--/ Abstract__block -->\",\"PeriodicalId\":49930,\"journal\":{\"name\":\"Kybernetes\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kybernetes\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1108/k-02-2024-0344\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, CYBERNETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kybernetes","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1108/k-02-2024-0344","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, CYBERNETICS","Score":null,"Total":0}
Multi-stakeholder recommendations system with deep learning-based diversity personalization and multi-objective optimization for establishing trade-off among competing preferences
Purpose
The Multi-Stakeholder Recommendation System learns consumer and producer preferences to make fair and balanced recommendations. Exclusive consumer-focused studies have improved the recommendation accuracy but lack in addressing producers' priorities for promoting their diverse items to target consumers, resulting in minimal utility gain for producers. These techniques also neglect latent and implicit stakeholders' preferences across item categories. Hence, this study proposes a personalized diversity-based optimized multi-stakeholder recommendation system by developing the deep learning-based diversity personalization model and establishing the trade-off relationship among stakeholders.
Design/methodology/approach
The proposed methodology develops the deep autoencoder-based diversity personalization model to investigate the producers' latent interest in diversity. Next, this work builds the personalized diversity-based objective function by evaluating the diversity distribution of producers' preferences in different item categories. Next, this work builds the multi-stakeholder, multi-objective evolutionary algorithm to establish the accuracy-diversity trade-off among stakeholders.
Findings
The experimental and evaluation results over the Movie Lens 100K and 1M datasets demonstrate that the proposed models achieve the minimum average improvement of 40.81 and 32.67% over producers' utility and maximum improvement of 7.74 and 9.75% over the consumers' utility and successfully deliver the trade-off recommendations.
Originality/value
The proposed algorithm for measuring and personalizing producers' diversity-based preferences improves producers' exposure and reach to various users. Additionally, the trade-off recommendation solution generated by the proposed model ensures a balanced enhancement in both consumer and producer utilities.
期刊介绍:
Kybernetes is the official journal of the UNESCO recognized World Organisation of Systems and Cybernetics (WOSC), and The Cybernetics Society.
The journal is an important forum for the exchange of knowledge and information among all those who are interested in cybernetics and systems thinking.
It is devoted to improvement in the understanding of human, social, organizational, technological and sustainable aspects of society and their interdependencies. It encourages consideration of a range of theories, methodologies and approaches, and their transdisciplinary links. The spirit of the journal comes from Norbert Wiener''s understanding of cybernetics as "The Human Use of Human Beings." Hence, Kybernetes strives for examination and analysis, based on a systemic frame of reference, of burning issues of ecosystems, society, organizations, businesses and human behavior.