在蒙特卡洛和多级蒙特卡洛方法中使用 h 统计量进行协方差估计

IF 1.5 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY
Sharana Kumar Shivanand
{"title":"在蒙特卡洛和多级蒙特卡洛方法中使用 h 统计量进行协方差估计","authors":"Sharana Kumar Shivanand","doi":"10.1615/int.j.uncertaintyquantification.2024051528","DOIUrl":null,"url":null,"abstract":"We present novel Monte Carlo (MC) and multilevel Monte Carlo (MLMC) methods to determine the unbiased covariance of random variables using h-statistics. The advantage of this procedure lies in the unbiased construction of the estimator's mean square error in a closed form. This is in contrast to conventional MC and MLMC covariance estimators, which are based on biased mean square errors defined solely by upper bounds, particularly within the MLMC. The numerical results of the algorithms are demonstrated by estimating the covariance of the stochastic response of a simple 1D stochastic elliptic PDE such as Poisson's model.","PeriodicalId":48814,"journal":{"name":"International Journal for Uncertainty Quantification","volume":"35 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Covariance estimation using h-statistics in Monte Carlo and multilevel Monte Carlo methods\",\"authors\":\"Sharana Kumar Shivanand\",\"doi\":\"10.1615/int.j.uncertaintyquantification.2024051528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present novel Monte Carlo (MC) and multilevel Monte Carlo (MLMC) methods to determine the unbiased covariance of random variables using h-statistics. The advantage of this procedure lies in the unbiased construction of the estimator's mean square error in a closed form. This is in contrast to conventional MC and MLMC covariance estimators, which are based on biased mean square errors defined solely by upper bounds, particularly within the MLMC. The numerical results of the algorithms are demonstrated by estimating the covariance of the stochastic response of a simple 1D stochastic elliptic PDE such as Poisson's model.\",\"PeriodicalId\":48814,\"journal\":{\"name\":\"International Journal for Uncertainty Quantification\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal for Uncertainty Quantification\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/int.j.uncertaintyquantification.2024051528\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal for Uncertainty Quantification","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/int.j.uncertaintyquantification.2024051528","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了新颖的蒙特卡罗(MC)和多级蒙特卡罗(MLMC)方法,利用 h 统计法确定随机变量的无偏协方差。这种方法的优势在于能以封闭形式无偏构建估计器的均方误差。这与传统的 MC 和 MLMC 协方差估计器形成了鲜明对比,后者基于仅由上界定义的有偏均方误差,尤其是在 MLMC 内。通过估计泊松模型等简单一维随机椭圆 PDE 的随机响应协方差,演示了算法的数值结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Covariance estimation using h-statistics in Monte Carlo and multilevel Monte Carlo methods
We present novel Monte Carlo (MC) and multilevel Monte Carlo (MLMC) methods to determine the unbiased covariance of random variables using h-statistics. The advantage of this procedure lies in the unbiased construction of the estimator's mean square error in a closed form. This is in contrast to conventional MC and MLMC covariance estimators, which are based on biased mean square errors defined solely by upper bounds, particularly within the MLMC. The numerical results of the algorithms are demonstrated by estimating the covariance of the stochastic response of a simple 1D stochastic elliptic PDE such as Poisson's model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal for Uncertainty Quantification
International Journal for Uncertainty Quantification ENGINEERING, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
3.60
自引率
5.90%
发文量
28
期刊介绍: The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信