Shiqi Liu, Zhichao Cheng, Huanling Wang, Yong Zhou, Wei Li
{"title":"节理岩块冲击刚性挡板结构的离散元素分析","authors":"Shiqi Liu, Zhichao Cheng, Huanling Wang, Yong Zhou, Wei Li","doi":"10.1007/s40571-024-00797-w","DOIUrl":null,"url":null,"abstract":"<p>Rockslide is a hot topic and universal phenomenon in the mountainous regions prone to geological hazards, which may pose substantial threats to property. The discrete element method (DEM) has been widely used to simulate the movement process of rockslide and avalanche. However, the rockslide involving jointed rock mass needs more adequate study to evaluate the safety implications effectively. In this paper, a series of DEM tests are conducted to study the movement and fragmentation of blocks with varying structure. The results show that at sliding angle of 45°, horizontal velocity reduces more slowly than vertical velocity because the particles move in a forward direction after impacting the bottom wall. The existence of a baffle structure limits sliding particle movement effectively and enhances the arch effect through the distribution of contact force chains. The number of joints, slope angle and sliding distance have considerable impact on bond breaking percentages and the displacement of the rock mass center. All bond break percentages are close to 90%, and number of joints and slope angle have little impact on the displacement of the rock mass center. This study can guide landslide disaster prevention.</p>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"51 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discrete element analysis of jointed rock mass impact on rigid baffle structure\",\"authors\":\"Shiqi Liu, Zhichao Cheng, Huanling Wang, Yong Zhou, Wei Li\",\"doi\":\"10.1007/s40571-024-00797-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Rockslide is a hot topic and universal phenomenon in the mountainous regions prone to geological hazards, which may pose substantial threats to property. The discrete element method (DEM) has been widely used to simulate the movement process of rockslide and avalanche. However, the rockslide involving jointed rock mass needs more adequate study to evaluate the safety implications effectively. In this paper, a series of DEM tests are conducted to study the movement and fragmentation of blocks with varying structure. The results show that at sliding angle of 45°, horizontal velocity reduces more slowly than vertical velocity because the particles move in a forward direction after impacting the bottom wall. The existence of a baffle structure limits sliding particle movement effectively and enhances the arch effect through the distribution of contact force chains. The number of joints, slope angle and sliding distance have considerable impact on bond breaking percentages and the displacement of the rock mass center. All bond break percentages are close to 90%, and number of joints and slope angle have little impact on the displacement of the rock mass center. This study can guide landslide disaster prevention.</p>\",\"PeriodicalId\":524,\"journal\":{\"name\":\"Computational Particle Mechanics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Particle Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s40571-024-00797-w\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40571-024-00797-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
摘要
在易发生地质灾害的山区,岩石滑坡是一个热门话题和普遍现象,可能对财产造成重大威胁。离散元法(DEM)已被广泛用于模拟岩石滑坡和雪崩的运动过程。然而,涉及节理岩体的岩崩需要更充分的研究,以有效评估其安全影响。本文进行了一系列 DEM 试验,以研究不同结构岩块的运动和破碎情况。结果表明,在滑动角为 45°时,水平速度的降低速度比垂直速度的降低速度慢,因为颗粒在撞击底壁后会向前运动。挡板结构的存在有效限制了颗粒的滑动运动,并通过接触力链的分布增强了拱形效应。节理数量、斜坡角度和滑动距离对粘结断裂率和岩体中心位移有很大影响。所有粘结破碎率都接近 90%,而节理数和坡度角对岩体中心位移的影响很小。该研究可为滑坡灾害防治提供指导。
Discrete element analysis of jointed rock mass impact on rigid baffle structure
Rockslide is a hot topic and universal phenomenon in the mountainous regions prone to geological hazards, which may pose substantial threats to property. The discrete element method (DEM) has been widely used to simulate the movement process of rockslide and avalanche. However, the rockslide involving jointed rock mass needs more adequate study to evaluate the safety implications effectively. In this paper, a series of DEM tests are conducted to study the movement and fragmentation of blocks with varying structure. The results show that at sliding angle of 45°, horizontal velocity reduces more slowly than vertical velocity because the particles move in a forward direction after impacting the bottom wall. The existence of a baffle structure limits sliding particle movement effectively and enhances the arch effect through the distribution of contact force chains. The number of joints, slope angle and sliding distance have considerable impact on bond breaking percentages and the displacement of the rock mass center. All bond break percentages are close to 90%, and number of joints and slope angle have little impact on the displacement of the rock mass center. This study can guide landslide disaster prevention.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.