论布西内斯克方程组非连续伽勒金方法的误差估算

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
Saumya Bajpai, Debendra Kumar Swain
{"title":"论布西内斯克方程组非连续伽勒金方法的误差估算","authors":"Saumya Bajpai, Debendra Kumar Swain","doi":"10.1515/cmam-2023-0202","DOIUrl":null,"url":null,"abstract":"In this paper, we propose and analyze a discontinuous Galerkin finite element method for solving the transient Boussinesq incompressible heat conducting fluid flow equations. This method utilizes an upwind approach to handle the nonlinear convective terms effectively. We discuss new a priori bounds for the semidiscrete discontinuous Galerkin approximations. Furthermore, we establish optimal a priori error estimates for the semidiscrete discontinuous Galerkin velocity approximation in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi mathvariant=\"bold\">L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2023-0202_ineq_0001.png\"/> <jats:tex-math>\\mathbf{L}^{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and energy norms, the temperature approximation in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2023-0202_ineq_0002.png\"/> <jats:tex-math>L^{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and energy norms and pressure approximation in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2023-0202_ineq_0002.png\"/> <jats:tex-math>L^{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-norm for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mi>t</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_cmam-2023-0202_ineq_0004.png\"/> <jats:tex-math>t&gt;0</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Additionally, under the smallness assumption on the data, we prove uniform in time error estimates. We also consider a backward Euler scheme for full discretization and derive fully discrete error estimates. Finally, we provide numerical examples to support the theoretical conclusions.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"24 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Error Estimates of a discontinuous Galerkin Method of the Boussinesq System of Equations\",\"authors\":\"Saumya Bajpai, Debendra Kumar Swain\",\"doi\":\"10.1515/cmam-2023-0202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose and analyze a discontinuous Galerkin finite element method for solving the transient Boussinesq incompressible heat conducting fluid flow equations. This method utilizes an upwind approach to handle the nonlinear convective terms effectively. We discuss new a priori bounds for the semidiscrete discontinuous Galerkin approximations. Furthermore, we establish optimal a priori error estimates for the semidiscrete discontinuous Galerkin velocity approximation in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi mathvariant=\\\"bold\\\">L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_cmam-2023-0202_ineq_0001.png\\\"/> <jats:tex-math>\\\\mathbf{L}^{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and energy norms, the temperature approximation in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_cmam-2023-0202_ineq_0002.png\\\"/> <jats:tex-math>L^{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and energy norms and pressure approximation in <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mi>L</m:mi> <m:mn>2</m:mn> </m:msup> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_cmam-2023-0202_ineq_0002.png\\\"/> <jats:tex-math>L^{2}</jats:tex-math> </jats:alternatives> </jats:inline-formula>-norm for <jats:inline-formula> <jats:alternatives> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mi>t</m:mi> <m:mo>&gt;</m:mo> <m:mn>0</m:mn> </m:mrow> </m:math> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_cmam-2023-0202_ineq_0004.png\\\"/> <jats:tex-math>t&gt;0</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Additionally, under the smallness assumption on the data, we prove uniform in time error estimates. We also consider a backward Euler scheme for full discretization and derive fully discrete error estimates. Finally, we provide numerical examples to support the theoretical conclusions.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2023-0202\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2023-0202","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文提出并分析了一种非连续 Galerkin 有限元方法,用于求解瞬态 Boussinesq 不可压缩导热流体流动方程。该方法利用上风法有效处理非线性对流项。我们讨论了半离散非连续 Galerkin 近似的新先验边界。此外,我们还为 L 2 \mathbf{L}^{2} 和能量规范下的半离散不连续 Galerkin 速度近似、L 2 L^{2} 和能量规范下的温度近似以及 L 2 L^{2} -规范下的压力近似建立了最佳先验误差估计。 -t > 0 t>0 时的 L 2 L^{2} 和能量规范中的温度近似和 L 2 L^{2} 中的压力近似。此外,在数据较小的假设下,我们证明了时间误差估计的一致性。我们还考虑了完全离散化的后向欧拉方案,并推导出完全离散的误差估计值。最后,我们提供了数值示例来支持理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Error Estimates of a discontinuous Galerkin Method of the Boussinesq System of Equations
In this paper, we propose and analyze a discontinuous Galerkin finite element method for solving the transient Boussinesq incompressible heat conducting fluid flow equations. This method utilizes an upwind approach to handle the nonlinear convective terms effectively. We discuss new a priori bounds for the semidiscrete discontinuous Galerkin approximations. Furthermore, we establish optimal a priori error estimates for the semidiscrete discontinuous Galerkin velocity approximation in L 2 \mathbf{L}^{2} and energy norms, the temperature approximation in L 2 L^{2} and energy norms and pressure approximation in L 2 L^{2} -norm for t > 0 t>0 . Additionally, under the smallness assumption on the data, we prove uniform in time error estimates. We also consider a backward Euler scheme for full discretization and derive fully discrete error estimates. Finally, we provide numerical examples to support the theoretical conclusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信